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determined. The derived computational results indicate that a

heuristic approach is computationally efficient, although only a

suboptimal solution is achieved.
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ABSTRACT

RAWLICK, STEVEN JOHN. Production Scheduling of Sequenced Tapes for

Printed Circuit Pack Assembly. (Under the direction of Yahya Fathi.)

.. A sequencing machine, or simply, a sequencer, is a piece of

equipment used in the electronic assembly industry to produce sequenced

reel-packaged tapes of axial leaded components for different types of

Printed Circuit Packs (PCPs). Due to the limited number of dispensing

heads available on sequencers, the relatively large number of component

types competing for these heads, and the diversity of the component

type requirements of different types of PCPs, efficient scheduling of

these machines is usually not a simple task.

Fathi and Taheri [1986] developed a mathematical model pertaining

to one variation of the sequenced tape production scheduling problem.

They employ a strategy aimed at providing an optimal solution by

totally eliminating all change-over time between consecutive runs on

the available sequencers. Their integer programming model is

discussed, and the performance of their model is examined. Test

results provide evidence that the particular variation of the sequenced

tape production scheduling problem which they confront is intractable

through branch-and-bound techniques due to lengthy computation times.

A heuristic approach to solve another variation of the sequenced

tape production scheduling problem is presented. Three different 0
0

heuristic procedures employing a specific solution strategy are

developed. The algorithm followed by the three heuristic procedures is

described, and the relative merits of three procedures are empirically

A ..Y"
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CHAPTER 1

INTRODUCTION

The electronic assembly industry, as with most technical

industries, is unquestionably devoted to computerized, vastly efficient

production operations. A particular production item in huge demand is

a Printed Circuit Pack (PCP). Broadly speaking, a PCP is assembled via

an automated system that inserts components into a Printed Circuit

Board (PCB). The components themselves are pre-packdged in a specific

sequence on a large reel of tape which successively feeds the

components to the PCB (which, in reality, is a blank PCP). The

resulting product of this computer-controlled insertion process is the

completed Printed Circuit Pack.

Printed Circuit Packs are distinguishable from each other by their

component composition. PCPs differ in the types, and the number of

each type of component required for their production. Consequently, in

order to assemble a particular PCP, a specifically sequenced

reel-packaged tape containing all of the components required to produce

that PCP must be prepared in advance. However, components initially

are reel-packaged by type only. In other words, each reel contains

a large number of identical components. Given the task of producing a

sequenced reel-packaged tape, then, the requisite components must be

detached from the various component tapes on hand and spliced in a

specific sequence onto one blank receiving tape.

This detachment/splicing operation is commonly referred to in the

electronic assembly industry as sequencing and packaging. A condensed
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description of a sequencing/packaging operation and PCP production

process is extracted from a technical report by Fathi and Taheri

[1986, p. 3]:

A Variable Center Distance automatic insertion machine
(VCD) is a piece of equipment used in the electronic assembly
industry to insert axial leaded components into Printed
Circuit Boards (PCBs) to produce Printed Circuit Packs
(PCPs). Sequenced and reel-packaged components are loaded
onto a VCD, as input mate , while a numerically controlled
pattern program directs the operation of insertion of these
components into the PCB. Therefore, for each type of PCP,
the proper set of components must be sequenced according to
the requirements of the pattern program and packaged on tapes
(reel-packaged) prior to their use on a VCD. Typically, this
operation (sequencing and packaging) is performed on a
machine known as a Sequencing Machine, or simply, a
Sequencer.

A PCP assembly plant typically has several such
sequencers, each of which represents a substantial
investment. Efficient scheduling of these sequencers is a
common concern of the management from both the viewpoint of
equipment utilization and that of the throughput of the
insertion process. Because of the combinatorial nature of
the problems, efficient scheduling of the sequencers is not a
simple task.

The problem alluded to above is known as a sequenced tape

production scheduling problem. This problem has several variations

directly attributable to factors such as the number and type of PCPs to

be produced, and the resources available to produce them. The thrust

of this paper encompasses two distinct, yet related variations. The

first variation discussed is termed a sequencer assignment problem,

which is addressed by Fathi and Taheri in their report. Basically, a

sequencer assignment problem represents a situation in which sequencing

and packaging resources are, in a sense, unconstrained. The issue is

solving the problem so as to optimally utilize as few of the available

resources as possible. Fathi and Taheri present a mathematical



3

programming model that can be used to resolve some of the difficulties

involved when dealing with a sequencer assignment problem.

In this thesis, an effort is made to examine that mathematical

model and its performance, but the bulk of the research was influenced

by their closing remarks concerning a related problem. This variation

is termed a sequencer scheduling/assignment problem, which represents a

situation where sequencing and packaging resources are, in fact,

constrained. The reader will note that the nomenclature of the two

variations is similar in that they both contain the words 'sequencer

assignment problem', and they differ only by the exclusion/inclusion of

the word 'scheduling'. By extension, it is fair to assume that these

two problems are different because the 'scheduling' of something (yet

to be explained) is not important in the first, but is critical in the

second. Permit us to digress at this point to generally characterize

the 'sequencer assignment problem' and illustrate why 'scheduling' is

disregarded in one case, yet essential in the other.

Consider an environment where one sequencer is available. This

sequencer is equipped with a fixed number of dispensing heads. Reels

of components are mounted on these dispensing heads so that individual

components may be detached onto a blank tape to produce a sequenced

reel-packaged tape, or sequenced tape. The different component types

required to produce a single PCP, or pack type, are known in advance.

Therefore, the requisite component tapes are mounted onto various

sequencer dispensing heads so that the sequenced tape corresponding to

the particular pack type may be produced.

-.v.* -. %%, .V%"."*% "*%*%w * * ,%w;--'' - -": -'' -'' , ; W , ' ' V% r'
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This sequencing and packaging operation seems straightforward.

However, the environment becomes congested when different pack types

need to be produced. The possibility exists that the total number of

component types needed to produce all of the different pack types

exceeds the fixed number of sequencer dispensing heads currently

available. If this situation occurs, it is inevitable that at some

point during the sequenced tape production process, the sequencing

machine will have to halt so that the necessary, unmounted component

tapes may be loaded, causing unneeded component tapes to be removed.

Once this change-over operation is completed, the sequencing and

packaging operation resumes. The only alternative to this situation is

to purchase extra dispensing heads to affix to the sequencer in order

to accommodate all of the different component tapes. Given this

alternative, which requires a favorable decision at management level,

the sequencer again would be capable of producing all of its assigned

s.quenced tapes without halting.

Halting the sequencer during the production process of the

sequenced tapes is the key issue. If the sequencer can produce all of

its assigned sequenced tapes without change-overs, then the only

set-up task is to load the appropriate component tapes onto the

dispensing heads prior to production start-up. This situation,

accurately portrayed as the sequencer assignment problem, does not

require a sequenced tape production schedule. In other words, the

order of production of the different types of sequenced tapes,

corresponding to the different pack types, does not affect their total

production time. This is true, because under the assumption that no

I
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change-overs will occur, there will be no set-up time between

production of consecutive types of sequenced tapes. It follows that

all schedules (orders of production) result in the same total

production time, hence are equally good.

This, however, is certainly not the case when the sequencer cannot

produce all of its assigned sequenced tapes without halting. It may be

cost effective for management to tolerate this situation depending on

the duration of the sequencer halts, and the costs incurred to purchase

extra dispensing heads. Naturally, the sequenced tapes must be

assigned to the sequencer for production, but the order of production

of the sequenced tapes is now vitally important. The logic behind this

stems from the fact that some pack types may have more in common with

others in terms of component composition. A judicious production

schedule might group common pack types together. By establishing this

sort of relationship, ideally then, the sequencer would produce as many

sequenced tapes as possible before halting to take on other needed

component tapes. The production schedule also dictates which specific

component tapes must be loaded onto the dispensing heads, and when they

are to be loaded. This situation is fittingly portrayed as the

sequencer scheduling/assignment problem. It is reasonable to assume

that shrewd scheduling might result in shorter, and possibly fewer

sequencer halts. This thought process is very much in line with

industry's desire to maintain vastly efficient production operations.

The sequencer scheduling/assignment problem referred to in the

closing remarks by Fathi and Taheri is a much more complex problem than

the sequencer assignment problem, which they treat in great detail.

L j



6

The subject matter of this thesis is inspired directly from their

technical report. The goals of this research are twofold:

1) Test their mathematical model of the sequencer assignment

problem to develop an insight into its performance in a typical problem

environment. A test phase would hopefully enable conclusions to be

drawn concerning the model's efficiency and possibly detect particular

aspects inherent in the model that might lead to other areas of

research.

2) Study the more realistic sequencer scheduling/assignment

problem, which would be created by management's decision not to

purchase additional dispensing heads, but instead, to tolerate a

certain amount of change-over time between consecutive runs on the

sequencer. This problem, spurred by a managerial attitude of, in

effect, 'Work with the resources currently available and prepare the

corresponding sequenced tapes in accordance with the specified pack

type requirements', necessitates a mathematical model altogether

different from the Fathi/Taheri model.

Due to the nature of the results derived during the test phase of

the Fathi/Taheri model, it became readily apparent that the two

aforementioned goals actually lead to one and the same objective, which

constitutes the basis for this research. This objective is the

determination of a production schedule of sequenced tapes that

minimizes the total change-over time between consecutive runs on the

sequencers for a given set of pack types and their associated volume

requirements. An implied task in this study is to ensure that the
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distribution of total workload among the available sequencers is

relatively even throughout the sequenced tape production process.

As alluded to earlier, the technical report presented by Fathi and

Taheri is the cornerstone of this study. In their report, they offer a

very condensed, description of the operations performed by Variable

Center Distance automatic insertion machines (VCDs), and the operations

performed by sequencing machines. The thrust of their report centers

on the sequencer assignment problem, and the mathematical programming

model developed to provide a solution for that problem.

VCD operations are very complex in nature, and are the subject of

intense scrutiny in the electronic assembly industry. In a working

paper by Saboo et al. [1986], electronic assembly operations with

respect to Printed Circuit Boards are discussed, and a detailed

explanation of VCD operations is provided. The operation of sequencers

is an integral portion of the overall PCP assembly process, and as

such, requires intense scrutiny as well. For a description of the

sequencer operations, see the Sequencer User's Manual, by Universal

Instruments Corporation [1986].

The mathematical programming model developed by Fathi and Taheri

is a type of model frequently used for problem solving and decision

making in production systems. One category of mathematical programming

model is known as linear programming. For a review of linear

programming, see Ozan [1986] or Murty [1983].

.p
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An Integer Programming model is a Linear Programming model with an

extra requirement that some (or all) of its variables must be integer

valued. The model designed by Fathi and Taheri is an integer

programming model. Salkin [1975] discusses integer programming in

detail, and describes various techniques utilized to formulate and

solve such problems.

Chapter 2 defines the sequencer assignment problem and discusses

the strategy supporting the mathematical model presented by Fathi and

Taheri. The reader is permitted an insight into the model's

performance when tested using several sets of typical problem

parameters. The necessity of an alternative approach is demonstr&ted.

Chapter 3 discusses the strategy employed to confront the sequencer

scheduling/assignment problem. Some measures of goodness by which

different heuristic procedures may be compared with each other are

described. In Chapter 4, the assumptions used in developing a specific

heuristic approach designed to provide a solution to the sequencer

scheduling/assignment problem are discussed. This chapter also

contains the specific algorithm followed by three different heuristic

procedures. Chapter 5 describes the specific aspects of the three

heuristic procedures, and provides an example demonstrating a

particular procedure performed by the algorithm. Chapter 6 provides

computational results, and offers a comparison of the three heuristic

procedures and an interpretative discussion of the results. Avenues

for further research are presented.
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CHAPTER 2

A MATHEMATICAL MODEL FOR LOADING SEQUENCERS

2.1 Problem Background

For any Printed Circuit Pack, or pack type, to be produced, the

different component types required for that pack type must be packaged

on a reel in the proper sequence. The sequenced reel of component

types is placed on a VCD which cuts the components from the reel and

inserts them into a Printed Circuit Board. The insertion process is

controlled by a pattern program. Therefore, for every pack type that

must be produced on a VCD, a sequenced tape of required component types

must be previously prepared by a sequencer. The component types that

make up the packaged reel are inserted onto the tape in a specific

reverse sequenced order, again controlled by a pattern program, so that

they will be later inserted into the board correctly by the VCD.

Before delving into the mathematical programming model developed

by Fathi and Taheri treating the sequencer assignment problem, it is

essential to thoroughly understand the operation of sequencers.

Without this understanding, it is utterly impossible to fully grasp the

problem at hand, nor is it possible to gain insight into the methods

utilized to provide a solution. Consequently, an extracted portion

from their report explains the operation of sequencers [1986, p. 4]:

A Sequencer consists of a set of dispensing heads that
cut the components from input reels according to the bill of
materials and the insertion pattern. The dispensed
components are fed onto a conveyor chain where they are
spaced and remounted on an automatically fed tape. Figures
2.1 and 2.2 depict schematic views of a sequencer and the
sequencing operation, respectively.
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Like VCD machines, sequencers are typically run by
control programs which are written for specific Printed
Circuit Pack (PCP) designs. When developing these control
programs, the programmer needs to assume that specific
component types are available on specific dispensing heads.
Accordingly, prior to operating the sequencer, an operator
must verify that these components are actually loaded on the
appropriate dispensing heads. This may require unloading
some component tapes from the dispensing heads and loading
the required set of component tapes in their place. We refer
to the time required to perform this unloading/loading
operation as the change-over time.

As a general rule, the management usually prefers to
streamline the PCP production process by reducing the
change-over time between consecutive runs on the sequencers
(even if this requires additional capital investment). To
achieve this managerial goal, a variety of different
strategies could be employed.

They later describe a typical problem environment consisting of 3

to 6 sequencers, 20 to 40 pack types, and anywhere from 200 to 400

different component types. This sequencer assignment problem is

combinatorial in nature and can be described thusly.

Throughout the remainder of this thesis, we use the terms pack

type, pack, and sequenced tape synonymously, for all intents and

purposes. Although sequenced tapes are prepared prior to the

production of pack types, this interchangeable relationship is feasible

because a pack type and its corresponding sequenced tape require

identical component types. Therefore, when a phrase appears such as '.

a pack type must be produced, and is assigned for production to a

sequencer . . it should be clearly understood that the

corresponding sequenced tape is actually assigned to the sequencer for

production, since sequencers produce sequenced tapes, not pack types.

' N
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This conscious abuse of terminology facilitates the comprehension of

complex passages and serves to unclutter lengthy explanations.

Each pack type consists of a fixed number of different component

types, and each available sequencer has a fixed number of dispensing

heads available for mounting component tapes. This is an essential

piece of information. It is clearly impossible to commence production

of a sequenced tape corresponding to a specific pack type, then halt

the sequencing operation in order to load other needed component tapes

onto the sequencer. Therefore, we know that if any pack type is

assigned to a particular sequencer, then that sequencer is capable of

producing the corresponding sequenced tape without halting, since the

number of dispensing heads available for mounting component tapes is

greater than or at least equal to the number of different component

types required to produce that sequenced tape.

Of the 20 to 40 pack types to be produced, some may bear

resemblance, while others may be distinctly different. By this, it is

inferred that some pack types may require a similar set of different

component types, and/or that most of the different component types

required for production are common to each. On the contrary, some pack

types may have very few component types in common with others, and/or

the number of component types required to produce them may differ

drastically, possibly up to the maximum number of different component

types that any pack type would require.

To capsulize the sequencer loading situation, we assume that

within the planning horizon, a PCP assembly plant must produce 20 to 40
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pack types, none of which requires more than a fixed number of

different component types in order to be completed (for purposes of

this paper, the fixed number is set at 100). The plant has 3 to 6

sequencers available for production, and none of the sequencers have

more than 100 dispensing heads available (the identical fixed number)

to mount component tapes. The total number of different component

types needed to produce all of the pack types within the planning

horizon will not exceed 400. The ideal solution is a pack

type-to-sequencer assignment plan that permits all of the corresponding

sequenced tapes to be produced without causing any of the sequencers to

halt because one or more of the required component types are not

already mounted on that sequencer's dispensing heads.

2.2 Problem Statement

The problem facing a production supervisor then, within the

planning horizon, is to decide which pack types should be assigned to

each available sequencer. This assignment ultimately determines which

sequenced tapes will be produced by each sequencer. Recall that

management prefers to streamline the production process of the

sequenced tapes by reducing the change-over time, or number of

change-overs, between consecutive runs on the sequencers. Intruding on

this already complex situation is the requirement that the assignment

of pack types to sequencers should be such that the distribution of

work, or equivalently, total processing time, among the available

sequencers is relatively even. Total processing time of a sequencer

is measured by the total number of component insertions that the
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sequencer makes while it produces all of its assigned sequenced tapes

within the planning horizon. Management is not easily pleased!

In other words, nirvana, from management's point of view, is

characterized by a planning horizon such that once the available

sequencers are 'started up, they are not turned off until all of the

sequenced tapes required to be produced are completed and the workload

(the number of component insertions that each sequencer makes to

produce the tapes) is relatively even. It is easy to envision how the

sequencer loading situation can be a production supervisor's nightmare!

Falling short of nirvana, the production supervisor is tasked to

devise a pack type-to-sequencer assignment plan that necessitates the

fewest number of change-overs between sequencer runs. Also, if

change-overs should occur, they should take as little time as possible.

Ali the while, the relatively even distribution of sequencer workload

should be maintained. A more detailed explanation of change-overs and

how they impact upon the problem solution is given in Chapter 3. They

are not an area for consideration in the model developed by Fathi and

Taheri since their model totally eliminates all change-overs.

To further amplify the situation where a change-over does not

occur, let us consider just one sequencer of those available in a

typical problem environment. Assume that this particular sequencer is

scheduled to produce 10 sequenced tapes. For this sequencer not to

experience a change-over while producing the 10 sequenced tapes, the

total number of different component types required to produce the 10

sequenced tapes may not exceed 100, which is the number of dispensing

heads on that sequencer. In other words, the cardinality of the union

W NNW~



16

of all of the component types required to produce the 10 sequenced

tapes may not exceed 100. If it did, then at some point in time, at

least once, the sequencer would have to halt so that the required

unmounted component tape(s) could be loaded on a dispensing head(s) of

the sequencer, 'in turn causing other component tape(s) to be removed.

The production process of the sequenced tapes would resume after the

component tape changes were completed.

2.3 Model Strategy

The strategy employed by Fathi and Taheri in the development of

their model is aimed at the complete elimination of all change-over

time. They succeed in accomplishing this goal, which is also

management's ideal goal, by permanently dedicating specific sequencer

dispensing heads to specific component types. In this manner, for

every sequenced tape that must be produced, there is at least one

sequencer which has all of the necessary dedicated heads. The caveat

attached to their model, however, is that depending on the set of input

parameters constituting any particular problem, the resulting solution

might require the acquisition of additional dispensing heads, which

management may or may not decide to purchase.

Prior to further explanation of their model, detailed

clarification as to the difference between the sequencer assignment

problem and the sequencer scheduling/assignment problem is appropriate.

In the event that management approves of purchasing additional

dispensing heads, the Fathi/Taheri model of a sequencer assignment

problem is perfectly suitable to determine a pack type-to-sequencer

assignment plan. There would never be cause for concern when their

3.
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model provided a resulting solution requiring additional dispensing

heads to be purchased. Under these circumstances, a schedule that

exactly orders the production of sequenced tapes for the purposes of

reducing change-over time is not required. The Fathi/Taheri model

solution dictates that when a pack type is assigned to a sequencer for

production, a dispensing head on that sequencer has been dedicated for

every one of the different component types required to produce that

corresponding sequenced tape. Therefore, the exact order by which

different sequenced tapes are successively produced on each sequencer

is inconsequential. None of the sequencers will necessitate a

change-over regardless of the order of production of successive

sequenced tapes.

This property is a result of the construction of their model. The

model seeks a particular dispensing head-to-component type dedication,

and the corresponding pack type-to-sequencer assignment plan, such that

no change-overs are required throughout the planning horizon (except,

of course, for when a component tape exhausts its components). In

other words, the Fathi/Taheri model seeks to assign pack types to the

sequencers in a manner such that all of the different component types

required to produce each corresponding sequenced tape are mounted on at

least one of the available sequencers. The model makes no attempt to

schedule the order of production of sequenced tapes, since, as it has

been previously pointed out, a production schedule has absolutely no

effect on the degree of goodness of the solution.
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By association, then, the Fathi/Taheri model is suitable for use

in situations where the assignment of specific pack types to sequencers

for production is the primary objective of the analysis, and production

scheduling has no impact. The circumstances that propagate this

problem (the sequencer assignment problem) are, for any set of typical

problem parameters, either the case where the model solution specifying

the pack type-to-sequencer assignment plan does not require any

additional dispensing heads on any of the available sequencers, or, if

the resulting solution does indeed require extra heads to be added,

management is willing to purchase them.

Details of the sequencer scheduling/assignment problem are fully

discussed in Chapter 3. It is sufficient at this point to note that

the sequencer scheduling/assignment problem presents itself whenever

change-overs must occur during the production process of the sequenced

tapes. If change-overs are necessary during production, the pack

type-to-sequencer assignment plan and the exact order of production of

sequenced tapes impact upon the number and duration of change-overs.

Intuitively, if the pack types assigned to a sequencer are relatively

similar, and furthermore, if the order of production of the

corresponding sequenced tapes is specified such that the different

types of components required to produce each one successively are

relatively similar, it is justifiable to expect that the number and the

duration of change-overs would be less than the case where the pack

type-to-sequencer assignment plan and the corresponding schedule (the

order of production of different sequenced tapes on a sequencer) is

determined hapzardly.
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Therefore, not only does judicious assignment of the pack types to

sequencers affect the degree of goodness of the solution, but also, the

schedule designating the exact order of production of the assigned

sequenced tapes on each sequencer has a significant impact upon the

goodness of the solution. This more realistic sequencer

scheduling/assignment problem is a product of management's decision not

to purchase additional dispensing heads, but instead, to tolerate a

certain amount of change-over time.

Returning to the Fathi/Taheri mathematical programming model, the

strategy employed in developing their model has been previously

discussed. To facilitate further explanation, however, that strategy

is reiterated. The model seeks a particular dispensing

head-to-component type dedication, and the corresponding pack

type-to-sequencer assignment plan, such that no change-overs are

required over the planning horizon and the total workload is relatively

balanced among the available sequencers during that period. Achieving

such a dedication/assignment plan may not be feasible, however, within

the current availability of dispensing heads on the sequencers.

Therefore, a resulting solution, given any set of typical problem

parameters, may require addition of extra heads to the sequencers. The

objective function of their model is designed to obtain a

dedication/assignment plan requiring the fewest additional heads.

To accomplish this, two different sets of decision variables are

used in the model. The first set of decision variables govern the

dedication of dispensing heads to component types, while the second set

govern the assignment of pack types to sequencers. Some constants
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describing the sequencing environment and a detailed description of the

two sets of decision variables follow:

L - The number of available sequencers.

M - The total number of pack types to be produced.

N - The total number of different component types.

Ck - The number of dispensing heads currently available on the kth

sequencer, for k = 1 to L.

Recall that a typical problem environment consists of 3 to 6 available

sequencers, 20 to 40 pack types to be produced, and anywhere from 200

to 400 different component types which are needed for production of the

required pack types.

The decision variables used in the model are:

Xjk - This is a 0-1 variable (for j = 1 to N and k = 1 to L) indicating

the allocation of the different component types to the available

sequencers. Xjk = 1 if component type j is allocated to the kth

sequencer and Xjk = 0 otherwise. The number of 'x' decision

variables in the model is determined by the product of the

number of available sequencers, L, and the number of different

component types, N, in any typical problem. In other words,

there are N*L 'x' decision variables in any given problem.

Notice that if Xjk = 1, then one (and only one) dispensing head

on the kth sequencer will be dedicated to component j.

Yik " This is a 0-1 variable (for i = 1 to M and k = I to L) specifying

the assignment of the pack types to the available sequencers.

Yik = 1 if pack type i is assigned to the kth sequencer (that is,
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the sequenced tape corresponding to pack type i will be prepared

by the kth sequencer) and Yik = 0 otherwise. The number of 'y'

decision variables in the model is determined by the product of

the number of available sequencers, L, and the number of pack

types to be produced, M, in any typical problem. In other words,

there are M*L y' decision variables in any given problem.

The Fathi/Taheri model is categorized as a pure 0-1 integer

programming (IP) model, as all of the model decision variables (xjk's

and Yik's) may only take on the values of 0 or 1. Furthermore, the IP

model contains L(M+N) decision variables. That is, since the number of

'x' decision variables is N*L, and the number of 'y' decision variables

is M*L, then the total number of decision variables, given any set of

typical problem parameters, is the sum of the two, or L(M+N). Relating

this formula to the figures describing a typical problem environment (L

= 3 to 6 sequencers; M = 20 to 40 pack types; N = 200 to 400 different

component types), their IP model could have anywhere from 660 to 2,640

decision variables. The IP model for the sequencer assignment problem

is presented in Fathi and Taheri [1986, p. 12].

In addition to the objective function, their model consists of

four distinct groups of constraints, of which only one will be

addressed in depth. Recall that the two goals of management are

minimization of change-over time between consecutive runs on the

sequencers, and a relatively even distribution of work among the

available sequencers throughout the planning horizon. To achieve the

second goal, a group of load-balancing constraints is introduced into

the model. These load-balancing constraints are designed to limit the

bndekMAB& A% WA % UkIX P C.1 NL
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total workload assigned to each sequencer during the planning horizon.

As mentioned earlier, workload is measured by the total number of

component insertions that a sequencer makes while it produces all of

its assigned sequenced tapes. It seems reasonable to assume that the

total workload .assigned to a sequencer is proportional to the total

number of individual components inserted by that sequencer. As a

preface to the derivation of these load-balancing constraints,

additional notation must be defined:

A - An M by N matrix where (for i = 1 to M and j = 1 to N) aij = 1 if

pack type i requires component type j, ai = 0 otherwise.

bi - The number of different component types on pack type i, for i = 1

to M. Notice that

N
bi = I aij for i = 1 to M

j=1

b - The total number of components on pack type i, for i = 1 to M.

Notice that bt > bi, due to the fact that pack type i might

require more than one unit of any particular type of component.

vi - Production volume for pack type i, that is, the total number of

units of pack type i to be produced for i = 1 to M over the

planning horizon. Notice that sequencing is a merging operation,

thus bjv. is a measure of the total amount of work performed by a

sequencer to produce the total demand for the pack type i (b!v. is11

the total number of components to be sequenced for all packs of

type i).
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For k = 1 to L, let Sk be the maximum number of components

permitted to be inserted by the kth sequencer during the production

period. The kth constraint in this group will then be

M
i v-ib'yik S Sk for k = 1 to L

The values for all Sk'S must be provided in advance via managerial

policy. If management's policy is the relative even distribution of

the total workload among all of the available sequencers, then Sk (for

k = 1 to L) could be the total number of components to be mounted

during the production period divided by L, the number of available

sequencers, plus a relatively small constant. That is, let

M

Sk i=1 L + constant

On the contrary, if management's policy specifies an uneven

distribution of the load for whatever reason, then the values of the

Sk's would need to be fixed accordingly. In any case, it is important

that the selection of the values of the Skis is such that the sequencer

assignment problem remains feasible.

2.4 Model Performance

A variety of procedures are suitable for solving the Fathi/Taheri

mathematical model. The LINDO computer program [1984] is a system

which solves linear and 0-1 integer programming models. The solution

procedure used by UNDO to solve integer programs is based around the
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enumerative method known as branch-and-bound. For a detailed

discussion of integer program solution methods, see Salkin [1975] and

Ozan [1986].

To provide a solution to an integer program (IP), LINDO first

solves the model using linear programming (LP) techniques. See Murty

[1983]. The ordinary LP solution generally assigns fractional values

to some or all of its decision variables. For a minimization problem,

the LP solution provides a lower bound on the optimal solution to the

IP. By chance, if the LP solution is all integer, then the LP solution

is, in fact, an optimal solution for the IP. Barring this

circumstance, LINDO fixes the user-designated integer variables to

either 0 or 1 through branch-and-bound procedures to derive an integer

solution. In order to utilize LINDO, the IP model must be specifically

formulated into an objective function and a body of constraints. This

model formulation is based on input parameters and assembled by a

matrix generator.

The size and structure of the model formulation depends on input

parameters and known data associated with the input parameters. The

input parameters are:

L - The number of available sequencers.

M - The total number of pack types to be produced.

N - The total number of different component types.

For any typical combination of these three parameters, the model

formulation consists of the objective function and M + 2L + (L*M)

constraints. The total number of decision variables (xjk's and Yik'S)

PL' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ j d. N-.M . .- :,%..... ..-. s.). _-.
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in the model formulation equals L(M+N). The total number of 'x'

integer variables equals L*N. The total number of 'y' integer

variables equals L*M.

Other known data required to completely define the model

formulation are: the component requirements, by number and type, for

each pack type to be produced; the number of units of each pack type to

be prduced (vi); the number of available heads per sequencer (Ck); and

a volume capacity (Sk) measured in terms of component insertions,

representing the maximum workload that may be assigned to each

sequencer. Throughout this thesis, the sequencer volume capacities are

computed according to equation (1), so that a relatively even workload

distribution is maintained. Any deviation from this even workload

distribution concept is explicitly noted.

When the model formulation is completely defined by the input, it

is then assembled by a matrix generator. The purpose of the matrix

generator is to fashion the model formulation into a specific format

recognizable to LINDO. The matrix generator is programmed as a

subroutine that LINDO calls as it solves the problem. (See Appendix

8.1) For a detailed discussion of matrix generators, see the LINDO

references [1984, 1986].

To initiate the test phase of the Fathi/Taheri IP model, an

extremely atypical set of input parameters (L = 3 sequencers; M = 3

pack types; N = 4 different component types) and associated known data

were generated. The test problems were solved by LINDO on a VAX 11/750

computer. The user must designate those variables that are to be

integer-valued. Otherwise, UNDO may assign fractional values to those
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variables in its final solution. This particular problem has 3(3+4) =

21 total integer variables. There are 3*4 'x' integer variables, and

3*3 'y' integer variables. These input parameters describe an

incredibly small problem, but the problem serves to reveal a very

interesting phenomenon.

The initial LP solution assigned some integer values, and some

fractional values, to the 9 'y' variables as expected. However,

integer values of 0 or 1 were assigned to all 12 'x' variables. To

satisfy our curiosity, numerous other small problems were solved by

LINDO. Each time in the initial LP solution, values of 0 or 1 (rather

than any fractional values) were assigned to all 'x' variables, even

though LINDO was never explicitly instructed to do so. This phenomenon

could be due to the special structure of the IP model, although, as of

yet, we have not been able to fully explain it. It was hypothesized

that this phenomenon would have a significant favorable impact on the

overall computational requirements of the branch-and-bound enumerative

procedure used by LINDO.

The logic supporting this hypothesis centered on the fact that any

given problem has L(M+N) decision variables which must be

integer-valued. If all of the 'x' decision variables are always

assigned values of 0 or I in any optimal solution to the corresponding

LP model, then only the 'y' decision variables would have to be

identified to LINDO as integer variables. This results in a reduction

from L(M+N) to L*M decision variables that must be designated as

integer variables. Recalling typical sequencing environment values for

L, M, and N, this results in almost 917' fewer integer variables that
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would constitute the branch-and-bound node network. Simply, if the

branch-and-bound network is significantly reduced in size, it is

reasonable to assume that the search algorithm utilized by LINDO would

be less time-consuming, thus leading to an optimal solution in a

shorter time span.

The matrix generator that formulates the sequencer assignment

problem for LINDO was altered to take advantage of this phenomenon.

The same problem was entered again, and an optimal IP solution was

achieved very quickly. A second, larger problem was generated for

testing, although still much smaller than a typical problem. The input

parameters for this larger problem are:

L = 3 sequencers; M = 10 pack types; N = 20 different component types.

The number of dispensing heads per sequencer (Ck) = 10, and the volume

capacity per sequencer (Sk) remained relatively balanced.

The 3*10 'y' decision variables were identified to LINDO as

integer variables, and some 'y' variables were assigned fractional

values in the LP solution as expected. It was discovered during the

succeeding branch-and-bound phase, in which LINDO assigns 0-1 values to

all of the 'y' variables, that the model required an extraordinarily

long computation time to achieve an optimal IP solution. The computer

required a CPU time of roughly 46 minutes, and performed 99,443 pivots

to achieve an optimal IP solution. The branch-and-bound network

consisted of 3,689 branches. The reader should note that this problem

has a total of 3(10+20) = 90 decision variables. The smallest problem

in a typical sequencing environment has 3(20+200) = 660 decision

- .. ~ * ~ -V % % * 6'%** S.%
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variables. This sample problem is 86% smaller than the smallest

typical sequencer assignment problem. One can only imagine how muc&

time the computer would need to solve a typical problem using

branch-and-bound techniques.

An attempt was made to unconstrain this sample problem to an

atypical extent to determine if the model was sensitive to certain

parameters. The volume capacity (Sk) of each sequencer was computed

such that all of the pack types could be assigned to only one of the

available sequencers. In effect, the workload distribution was skewed

so that any sequencer would be permitted to produce all of the

sequenced tapes, thus causing an imbalance in the workload

distribution. Additionally, the number of heads per sequencer was

increased to 17. This is an inordinately high number in comparison to

the total number of different component types (20).

To achieve an optimal IP solution for this less constrained

sequencer assignment problem, the computer required a CPU time of

roughly 14.5 minutes, and performed 29,371 pivots. The

branch-and-bound network consisted of 1,571 branches.

It is apparent that this variation of a sequenced tape production

scheduling problem is not readily solved to optimality through

branch-and-bound procedures. Recall that optimality for the sequencer

assignment problem equates to total elimination of all change-over time

between consecutive runs on the sequencers. Previous research

indicates that large-scale zero-one linear programming problems, such

-,- - I* W V *.,M z* .P P -,.
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as the sequencer assignment problem, have chronically recorded

unreasonable computation times to achieve optimal solutions. An

article by Crowder, Johnson and Padberg in the Operations Research

journal [1983] contains a study of ten large-scale zero-one linear

programming problems. To paraphrase, their report strongly confirms

that a combination of problem preprocessing, cutting planes, and clever

branch-and-bound techniques permits the optimization of sparse

large-scale zero-one linear programming problems. They state that even

after problem preprocessing, the remaining gap between the optimal LP

solution and the optimal IP solution is "still too large to permit one

to expect completion of the branch-and-bound phase within a reasonable

time limit" [1983, p. 829].

Spielberg [1979, p. 157] writes

_large scale LP problems can still be inordinately
difficult on account of degeneracy, and there seems no
prospect for easy remedies. The node problems of the BB
(branch-and-bound) approach may therefore prove to be too
difficult, and enumerative approaches (or heuristic ones;
which are intrinsically more related to enumeration than to
BB programming) may be required.

Obviously, Spielberg is leaning towards alternate approaches to solve

large-scale zero-one linear programming problems. The subject matter

of the following chapters describes a heuristic approach to another

variation of the sequenced tape production scheduling problem.

The sequencer scheduling/assignment problem is created by

management's decision not to purchase extra dispensing heads, but

instead, to tolerate some sequencer change-over time. Due to this

self-imposed constraint, it is very doubtful that this problem can be

solved to optimality in polynomial time. McGinnis et al. [1986] report
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that this sequencer scheduling/assignment problem is NP-hard.

Therefore, one practical approach to this problem is a heuristic

procedure which is computationally efficient, although it may result in

a suboptimal solution.

Papadimitriou and Steiglitz [1982] explain the definition of

NP-hard problems, and discuss the concept by which a problem is

classified as NP-hard. Additionally, they offer some insight into the

value of heuristic approaches. They describe a heuristic as any

approach without a formal guarantee of performance, and assert that

such approaches are certainly valid in practical situations.

Development of such a heuristic approach is the topic of the remaining

chapters of this thesis.
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CHAPTER 3

THE SEQUENCER SCHEDULING/ASSIGNMENT PROBLEM

3.1 Problem Background

The sequencer scheduling/assignment problem portrays a realistic

situation involving constrained resources (sequencer dispensing heads).

Consider, again, a situation where a certain number of sequenced tapes,

M, must be produced within the planning horizon (typically, 20 < M (

40). The problem surfaces when the total number of different component

types required to produce all of the sequenced tapes exceeds the total

number of dispensing heads on the available sequencers. Therefore, it

is physically impossible to load all of the required component tapes on

the sequencers at one time. This situation demands at some point in

time during the planning horizon that at least one of the sequencers

will have to halt for unloading/loading of component tapes in order to

produce all of the sequenced tapes.

Even if the total number of different component types does not

exceed the total number of available dispensing heads, it might still

not be possible to allocate different component types to dispensing

heads of different sequencers so that all of the different component

types required for each sequenced tape are available on one sequencer.

In any case, the thrust of the remaining chapters of this thesis is

focused on the scheduling situation involving imminent sequencer

change-overs. Also, the reader should construe 'component types' to

mean 'different component types.' The word 'different' is frequently

omitted from this point forward.

* i- ' *. 4,-" "f,.-". *" ". ., -.- .. ..• •. "...
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Mindful of management's desire to streamline production

operations, a concerned production supervisor, in light of this

impending situation, would immediately approach management with a

request to purchase extra dispensing heads. "We can eliminate all

change-over time by adding extra heads." The Fathi/Taheri model can be

used to determine the fewest number of additional heads to purchase, he

could argue. Faced with management's very final decision not to

purchase extra heads, but instead, to tolerate some (minimal)

change-over time, the dejected production supervisor realizes that he is

confronted with a very complex, formidable task.

3.2 Problem Statement

By some method, a schedule that assigns the sequenced tapes to be

produced to the available sequencers must be devised. In addition,

this production schedule must designate the exact order by which

different sequenced tapes are produced on each sequencer. Obviously,

this production schedule dictates which component tapes are loaded onto

the individual dispensing heads, and when they are to be loaded. An

efficient production schedule serves to reduce the inevitable

change-over time between consecutive runs on the sequencer(s).

As mentioned earlier, development of an optimal schedule could be,

computationally, quite difficult. Our objective, then, is to develop a

heuristic procedure that devises such a production schedule in a

reasonable amount of time, even though the resulting schedule may not

be an optimal one. This heuristic procedure would be aimed at reducing

the total change-over time between consecutive runs on the sequencers

for a given set of pack types and their associated volume requirements.

'~ %~% - WALL& IN



33

In addition, the heuristic procedure should ensure a relatively even

distribution of total workload among the available sequencers

throughout the sequenced tape production process.

3.3 Strategy of Heuristic Approach

In order to develop a heuristic procedure that provides a solution

to the sequencer scheduling/assignment problem, the objective of the

procedure must be clearly defined. The formal objective is previously

stated in Section 3.2. Informally stated, the objective is to allocate

the requisite component types to the available dispensing heads such

that the total sequencer change-over time is small and that each

sequencer roughly makes a similar number of component insertions over

the planning horizon. The sequenced tapes to be produced compete for

dispensing heads. Some sequenced tapes have similar component type

requirements, while others may be vastly different. In order to

capitalize on the number of existing dispensing heads, it is logical to

assign sequenced tapes that require similar component types to the same

sequencer.

The heuristic approach pursued in order to provide a solution to

the sequencer scheduling/assignment problem embodies this logical

thought process. The fundamental strategy employed to confront the

sequencer scheduling/assignment problem is to associate together those

pack types which require similar component types. Conversely, those

pack types that bear little resemblance to one another are

disassociated by assigning them to different sequencers when possible

(recall the relatively balanced workload restriction).
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This strategy governs not only the assignment of pack types to

sequencers, but it also governs the order of production of the

sequenced tapes on each sequencer. When the sequenced tapes have been

assigned to a sequencer, the exact order by which they are successively

produced is necessary. Ordering their successive production based on

the similarity of their respective component type requirements would

likely result in shorter, and possibly fewer sequencer change-overs.

3.4 Measures of Goodness

Three different heuristic procedures are developed to provide

solutions to the sequencer scheduling/assignment problem. The inherent

structure of each of these procedures is founded upon the fundamental

strategy outlined in Section 3.3. When different heuristic procedures

are developed to provide solutions to the same problem, various

measures of goodness may be identified that permit comparison of the

different procedures with respect to their individual performance. In

an empirical sense, conjectures as to their relative merit may be made

after numerous typical problems are solved.

In this section, the primary and secondary measures of goodness by

which the three different heuristic procedures are compared are

thoroughly discussed. These two measures of goodness are valid

discriminators which accurately gauge the overall utility of the

resulting production schedules. Other, less significant measures of

goodness are considered. These less significant measures are

marginally useful when the performance of the three different heuristic

procedures is extremely competitive with respect to the primary and

secondary measures of goodness. In other words, when production
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schedules devised by the three different procedures, for a particular

set of problem parameters, cannot be conclusively gauged by the primary

and secondary measures of goodness, these less significant measures of

goodness may provide some insight as to their relative performance.

The primary measure of goodness for the three different heuristic

procedures is the total number of change-overs that occur in any

production schedule. The major contributor to an extended sequencing

planning horizon is sequencer halts. A production schedule that causes

two sequencer change-over periods is categorically worse than a

sequenced tape production schedule that causes only one change-over

period. (A sequencer that makes two change-overs is exactly equivalent

to two sequencers making one change-over apiece.) Sequencer change-over

periods are prominent in this respect because the set-up operations

required to prepare a sequencer for processing consume the most time,

and adversely extend the planning horizon more than any other

operation. Given a choice of production schedules devised for the same

set of problem parameters, the production supervisor would always

select the schedule requiring the fewest number of change-over periods.

Further explanation of the high level of prominence placed on the

number of sequencer change-overs is in order.

Ordinarily, a production supervisor might have reason to debate

the overall utility of different production schedules devised for the

same set of problem parameters. Recall that management has two goals

for production. The first goal is minimal sequencer change-over time,

and the second goal is a relatively even workload distribution. The

production supervisor would be in a quandary, for example, if one
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production schedule required only one sequencer change-over, but had an

unbalanced workload distribution, while another production schedule

required two change-over periods, but maintained a relatively balanced

workload distribution. With respect to management's two goals,

selection of the better production schedule is possibly ambiguous.

Fortunately, the three different heuristic procedures are

structured not to permit this set of circumstances. The three

procedures maintain a relatively balanced workload at all times,

thereby always satisfying the second of management's two goals. For

this reason, the total number of sequencer change-overs in any

production schedule is the paramount discriminator in gauging their

relative performance.

The secondary measure of goodness is the total number of component

tape changes necessitated by a given production schedule. This

secondary measure is especially relevant when the resulting production

schedules devised for the same problem all specify an identical number

of sequencer change-overe. When a particular sequenced tape is

designated for production, and all of the component types required for

that sequenced tape are not currently mounted, the sequencer must halt.

Component tapes not needed for that sequenced tape are removed to make

dispensing heads available for the required unmounted component tapes.

Intuition concedes that the total time needed to unload and load

component tapes is directly proportional to the number of component

tapes that must undergo this operation. Therefore, the second

criterion to compare the performance of the three different heuristic
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procedures is the fewest number of component tape changes required by a

production schedule for the same set of problem parameters.

The relative merits of the three different heuristic procedures

developed in this thesis are empirically determined strictly with

respect to the primary and secondary measures of goodness. Three

additional, less significant measures of goodness provide some insight

into the comparative performance of the different heuristic procedures.

These, for lack of a better term, tertiary measures are: sequencer

workload distribution; the total number of different component types

required by any sequencer to produce all of its assigned sequenced

tapes; and the total number of dedicated dispensing heads per sequencer

within a planning horizon.

Production schedule data pertaining to these tertiary measures of

goodness is presented. However, that data should be digested only as a

marginal consideration with respect to relative performance, as the

three different heuristic procedures are not rank ordered based on

these tertiary measures. The three tertiary measures merely assist in

assessing the performance of the different heuristic procedures when

their resulting production schedules devised for the same problem

cannot be conclusively gauged by the primary and secondary measures of

goodness.

The first tertiary measure of goodness discussed is the sequencer

workload distribution. The treatment of the distribution of total

sequencer workload over the planning horizon is addressed earlier in

this section. The basic structure of the three different heuristic

procedures is such that the distribution of total workload is

, w, ., . .? :, , .. . ., , ,
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relatively balanced at all times. However, the three procedures may

devise entirely different production schedules for the same set of

problem parameters. Therefore, the distribution of total workload may

be more or less balanced for each production schedule. If the

situation demands (the total number of sequencer change-overs, and the

total number of component tape changes specified by the resulting

schedules of all three procedures are identical for the same problem),

the overall sequencer workload distributions generated by the three

schedules may be compared to determine which heuristic procedure has

the most evenly balanced workload distribution, thus indicating the

better of the three schedules.

The second tertiary measure of goodness is the total number of

different component types required by any sequencer to produce all of

its assigned sequenced tapes. Once all of the sequenced tapes are

assigned to the available sequencers for production, the total number

of different component types required to produce all of the assigned

sequenced tapes on each sequencer is easily calculated. When the

required number of different component types exceeds the fixed number

of dispensing heads, it is clearly inevitable that that particular

sequencer will experience a change-over during the planning horizon.

The duration of any sequencer change-over period is, in part, a

function of the number of component tapes changed in that change-over

period. Intuitively, the total amount of change-over time for a given

sequencer is expected to be decreased as the number of different

component types, over and above the number of dispensing heads is also

decreased. In other words, if the total number of component tapes that
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must be changed on a sequencer within a planning horizon is small, it

is reasonable to assume that that sequencer will experience a lesser

amount of change-over time. The possibility that a component tape may

be dismounted, then remounted at a later time in that same production

period, is not. ruled out. However, an efficient production schedule

should make this particular event remote at best.

The final tertiary measure of goodness is the total number of

dedicated dispensing heads per sequencer within a planning horizon.

The definition of 'dedicated,' in this context, is that once a

component tape is mounted onto a sequencer dispensing head, it is never

removed (except, of course, for when a component tape exhausts its

components). 'Dedicated' dispensing heads surface when the particular

component type on that head is required for production by every

sequenced tape assigned to that sequencer. The logic supporting this

measure of goodness lies in the fact that there are a fixed number of

dispensing heads on any sequencer. If the number of dedicated

dispensing heads on a particular sequencer approaches its fixed number

of heads, by complementarity, there are fewer dispensing heads on that

sequencer eligible for unloading and loading of corrnent tapes. A

correlation might exist between a large number of dediPated dispensing

heads and a reduced amount of change-over time for any given sequencer.

To emphasize, these tertiary measures of goodness are not, in

themselves, empirical evidence enough to make a valid distinction

between the three different heuristic procedures. They are marginally

useful in possibly selecting one heuristic procedure over another when

their resulting production schedules are very similar. They are also
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very subjective in nature, as their results are given to interpretation

and production experience.

I
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CHAPTER 4

DESIGN OF HEURISTIC APPROACH

4.1 Developmental Assumptions

For a problem as broad as the sequencer scheduling/assignment

problem, some underlying assumptions are relevant in developing a

heuristic approach. Through legitimate assumptions, the problem at

hand is analyzed in greater depth. This analysis is essential to

achieve a satisfactory solution. Two main assumptions are incorporated

into the design of this heuristic approach. A third assumption is not

incorporated, as information necessary for its incorporation could not

be obtained. However, this assumption is discussed because it is

associated with the second of maniAement's two production

goals--relatively balanced sequencer workload distribution.

The first assumption incorporated into this heuristic approach is

that a pack type does not require more component types than there are

dispensing heads on any available sequencer. This assumption is

previously mentioned in Section 2.1. In a typical sequencing

environment, each available sequencer is equipped with a fixed number

of dispensing heads. When the number of component types required by

an assigned pack type exceeds this fixed number, that particular

sequencer requires a change-over just to produce that one corresponding

sequenced tape. This situation is highly irregular and would probably

lead management to purchase additional heads to produce these outsized

sequenced tapes.

The second assumption incorporated into this heuristic approach is

that the pack type volume requirements (vi - the number of each pack
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type to be produced) is roughly similar. This assumption relates to

the definition of sequencer workload and greatly affects the utility of

the formula used to compute sequencer volume capacity (Sk). In the

sequencing environment, work is measured by the total number of

component insertions that a sequencer makes over its planning horizon.

Suppose there exists a production volume requirement for a particular

pack type that is abnormally higher than all of the other pack type

production volume requirements. Two different situations may occur

given this particular event.

The first case surfaces when the total number of component

insertions required to produce the sequenced tapes for all units of

that particular pack type does not exceed the volume capacity (Sk ) of

any available sequencer. In this case, one sequencer is capable of

producing all of those particular sequenced tapes. However, due to the

extremely large component insertion requirement attached to that

particular sequenced tape, very few different pack types may be

assigned to that sequencer. To compensate for this unusual assignment,

the remaining sequencers are required to produce a disproportionately

large number of different sequenced tapes. It is reasonable to assume

that a sequencer stands a better chance of experiencing a change-over

as the number of different sequenced tapes it is assigned to produce

increases. The sequencer producing the sequenced tape with the

abnormally high volume requirement would experience few, if any,

change-overs, since it is basically producing one type of sequenced

tape.
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The second case surfaces when the total number of component

insertions required to produce all of the sequenced tapes for that

particular pack type exceeds the volume capacity of any available

sequencer. In this case, one sequencer is not capable of producing all

of those particular sequenced tapes because the computed volume

capacity (Sk) is not large enough. Therefore, the assignment of those

particular sequenced tapes would have to be divided over multiple

sequencers. Both cases mentioned above would require special

consideration to be properly treated in a heuristic approach.

A third assumption, not incorporated into this heuristic approach,

would be valuable. Sequencer processing time is measured in terms of

component insertions. When a sequencer experiences a change-over, it is

not inserting components; hence, its processing time is temporarily

halted. However, chronological time is still elapsing. A method to

relate sequencer change-over time (chronological time) to sequencer

processing time (number of component insertions) would be beneficial.

As of now, all sequencer change-over periods are considered to be

equivalent, regardless of the number of component tapes that are

changed during the change-over period. This relation would permit

comparison of the relative duration of sequencer change-over periods,

thus providing the means by which production schedules with an

identical number of sequencer change-overs may be distinguished.

The total chronological time consumed during a sequencer

change-over is, in part, a function of the number of component tape

changes required. Therefore, it is very likely that different
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production schedules devised for the same problem, each specifying an

identical number of sequencer change-overs, are not completed in the

same chronological time. A formula that could be used to relate the

duration of a particular sequencer change-over period to equivalent

sequencer processing time, in terms of a specific number of component

insertions, is.

T = K + cX

Definitions of the terms in this formula are as follows:

T - The total processing time, in terms of the specific number of

component insertions, of one sequencer change-over period.

K - The set-up time incurred during a sequencer change-over period, in

terms of a fixed number of component insertions. This is a

constant.

c - The time required to change one component tape, in terms of a fixed

number of component insertions. This is also a constant.

X - The total number of component tapes that must be changed in one

particular sequencer change-over period.

Valid estimates for the values of the constants, K and c, could

not be obtained. The routine sequencer set-up time, and the time

required to change one component tape, can be roughly equated to the

time it takes a sequencer to insert a certain number of components.

These constants would most likely be estimated through actual

production experience.



45

This formula equates the chronological time consumed during a

particular sequencer change-over period to a specific number of

component insertions that a sequencer routinely makes in the same

amount of chronological time. By incorporating this formula, the total

production volume requirement of any sequencer would accurately reflect

the total number of component insertions required to produce its

assigned sequenced tapes, plus an equivalent number of component

insertions incurred by the change-overs experienced by that sequencer.

The algorithm would take these equivalent sequencer production volume

requirements into account and balance them accordingly as it devised an

appropriate production schedule. In this manner, the total sequencer

processing time required by a production schedule would be more

accurately gauged. This permits a better insight when comparing the

utility of different production schedules devised for the same problem.

4.2 Heuristic Algorithm

The specific algorithm, which assigns all of the pack types to be

produced to the L available sequencers, strictly adheres to the

strategy discussed in Section 3.3. The algorithm assigns pack types

which exhibit a high degree of similarity, in terms of component type

requirements, to the same sequencer. The algorithm separates pack

types that have little in common, in terms of component type

requirements, by assigning them to different sequencers.

In order to assign pack types to the sequencers according to this

strategy, the precise meaning of the terms similar and common must be

defined for the algorithm. An exact understanding of these two terms
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enables the algorithm to accurately establish the correct relationship

between pack types in terms of component composition.

4.2.1 SIMILAR Pack Types

There exists one precise definition of the term similar. The

algorithm searches for similar pack types only when it is in the

process of scheduling a sequencer for production. After the algorithm

has assigned the first pack type to a sequencer, it selects the most

similar, unassigned pack type. The algorithm attempts to assign this

most similar pack type to that same sequencer. If that pack type is

successfully assigned, the algorithm again selects the most similar,

unassigned pack type, and attempts to assign it to that same sequencer.

This process is repeated until the aigorithm can no longer schedule

a sequencer for one of several reasons.

The precise, unwaiverable definition of the term similar, with

respect to pack types, in the context of a sequencing environment, is:

When one tr more pack types have been assigned for production
to the k sequencer (for k = 1 to L), the unassigned pack
type that would require the fewest number of additional,
different component tapes to be mounted on that kth
sequencer, so as to produce that pack type together with the
previously assigned pack type(s) on the same production run,
is, in fact, the most similar, unassigned pack type.

This definition of similar is identical for the three different

heuristic procedures. This specific definition of similar capitalizes

on the fixed number of dispensing heads, and permits the maximum

possible number of sequenced tapes to be produced together on a

sequencer, for a particular production run. It is reasonable to assume

that a production schedule which always assigns the maximum possible
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number of sequenced tapes to ttie kth sequencer for all production runs

will, most likely, favorably result in a small amount of total

sequencer change-over time.

To emphasize, the algorithm does not select the first pack type

assigned to the kth sequencer (for k = 1 to L), for all production

runs, by incorporating the definition of the term similar. The

algorithm does, however, select all pack types subsequently assigned to

the kth sequencer, for all production runs, by solely incorporating the

definition of similar.

With one exception, the pack type assigned to the kth sequencer

(for k = 1 to L), for all production runs, is selected by incorporating

one of three definitions of the term common. The one exception

pertains to the very first assigned pack type when the algorithm

commences the scheduling process. This first pack type is selected via

a specific starting rule that is in no way associated to the definition

of the term common. Discussion of this starting rule is presented in

Section 4.3.1. The multiple definitions of common, and the method by

which the three definitions are implemented in the heuristic approach

for the sequencer scheduling/assignment problem, comprise the subject

matter of Chapter 5. It is sufficient to note that the three

definitions of the term common correspond to the three different

heuristic procedures. It is not necessary to know the three

definitions of common in order to follow the algorithm as it schedules

sequenced tapes for production.

In order for the algorithm to assign subsequent pack types to

sequencers based on the definition of the term similar, the actual
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relationship indicating the degree of similarity between pack types

must be determined. The method by which the similar relationship

between pack types is established, in terms of component type

requirements, is described in the next section.

4.2.2 Degree of Similarity Between Pack Types

Several operations must be performed prior to initiation of the

algorithm. The input parameters, L, M, N, and associated known data

(including the number, and type, of each component required by each

pack type) are entered. With this data, the various component type

totals (b., b!, v b; see pg. 22 for definitions) are computed.

The similar relationship between pack types is established next.

The method by which this similar relationship is established is through

the formation of a two-dimensional array, named Array DIFFER. The

numerical entries contained in DIFFER indicate the degree of similarity

between pack types in terms of component type requirements.

Array DIFFER is an (M+L)*M matrix. At this stage of the heuristic

procedure, only the first M rows of the total M+L rows are filled with

numerical entries. The M+kth row of DIFFER, for k = 1 to L (or

equivalently, the last L rows), is initially filled with numerical

entries after the algorithm assigns two pack types to the kth

sequencer. Discussion pertaining to these last L rows of DIFFER is

presented in Section 4.3.4.

The discussion in this section pertains only to the first M rows

of Array DIFFER. The numerical entries in the individual elements of

the ith row (for i = 1 to M) of DIFFER are derived by comparing the

different component types required by M-1 pack types against the
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different component types required by pack type i. Obviously, pack

type i is not compared against itself. The operation by which the

different component types required by the M-1 pack types are compared

against the different component types required by pack type i, to fill

the ith row of DIFFER, is best described as a question:

If the component tapes required to produce pack type i are already
mounted on the dispensing heads of a sequencer, how many more
different component tapes have to be additionally mounted in order
to produce pack types i and q together on the same sequencer? (i
= 1 to M; q = 1 to M; i # q)

This question is posed for every possible comparison of two pack types.

It is essential to note that the implication of comparing pack type q

against pack type i is, strictly, that the component tapes of pack type

i are already mounted, and it is to be determined if pack type q may be

produced together with pack type i. Example 4.1 demonstrates the

formation of the first M rows of Array DIFFER.

EXAMPLE 4.1

Suppose that a sequencing environment consists of the following:

L = 2 available sequencers.

M = 3 pack types to be produced.

N = 12 total different component types.

Ck = 10 dispensing heads on the k th sequencer.

The total number of different component types (b.) required by packs 1,

2, and 3 are 7, 6, and 6, respectively. The following 'A' matrix

(Table 4.1) represents the component type requirements of the three

pack types.

L.m A. , %
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Table 4.1 Component Type Requirements [matrix A]

Component Type 1 2 3 4 5 6 7 8 9 10 11 12

-------------------- - b. ,

Pack type 1 1 1 0 0 1 0 1 1 1 0 0 1 7

Pack type 2 0 1 0 1 1 0 0 1 0 1 1 0 6

Pack type 3 0 0 1 0 1 1 1 0 1 0 1 6

Recall that if aij = 1, then pack type i requires component type j for

production; aij 0 otherwise.

In forming the first M rows of Array DIFFER, the component type

requirements of pack 1 are compared individually against the component

type requirements of packs 2 and 3. The component type requirements of

pack 2 are compared individually against the component type

requirements of packs 1 and 3. The component type requirements of pack

3 are compared in the same fashion to packs 1 and 2. These comparisons

are made by posing the question described earlier in this section. The

question is posed for every possible comparison of two pack types

(e.g., 1 and 2 together; 1 and 3 together; 2 and 1 together; 2 and 3

together; 3 and 1 together; and 3 and 2 together). Since a pack type

is not compared against itself, the main diagonal of the M*M portion of

DIFFER is represented by hash marks. The numerical entries in the M*M

portion of DIFFER for this e,.awple are shown in Table 4.2.

• w ',., ,, w' . h, W'f " w '",", -, 'w; ,' ,w, ", ", - i' ",,/ ;,, ',,,'.,,.' , " ,..'.,.',,"-" "" "- . -• -"-" " ,' ., --" '" - , '"-.". .' , '' •.
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Table 4.2 M*M Portion of Array DIFFER

Packs

M =number of pack types =3 1 2 3

(0 = 1 to M) Pack 1 - 3 2

Pack 2 4 - 5 M rows

Pack 3 3 5 -

L = number of available '
sequencers = 2 L rows

I I I I

(k =1 to L)

The operations required to compare pack 2 against pack 1 are described

below (refer to Table 4.1). Identical operations are required for all

comparisons of two pack types.

Pack 1 requires seven different component types for

production--component types 1, 2, 5, 7, 8, 9, and 12. Pack 2 requires

six different component types for production--component types 2, 4, 5,

8, 10, and 11. The question is posed: If the component tapes required

to produce pack type 1 are already mounted on the dispensing heads of a

sequencer, how many more different component tapes have to be

additionally mounted in order to produce pack types 1 and 2 together on

the same sequencer? The only different component types that pack 2

requires that are not alreddy required by pack 1 are component types 4,

10, and 11. Therefore, if pack 1 component types are already mounted,

only three more different component types must be additionally mounted

to produce packs 1 and 2 together. Hence, 3 is the entry in row 1, j
-A,. *~ v%~ ~ .~ . . .. . . . . . . . . . . . .. .-
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column 2, of Array DIFFER (Table 4.2), which represents the comparison

of component type requirements of pack 2 against the component type

requirements of pack 1.

Two items specific to the M*M portion of Array DIFFER are briefly

addressed. Fir-st, there are always M-1 entries in the i t h row (for i =

1 to M) of this portion of the array. Second, the M*M portion of

DIFFER is not symmetric. If it was symmetric, the size of DIFFER would

be reduced, which wculd lend itself to a more efficient algorithm. The

comparison of pack 2 against pack 1 yields a value of 3, while the

comparison of pack 1 against pack 2 yields a value of 4 (see Table

4.2). This is not to say that the corresponding entries will always be

different. (See the entries in Table 4.2 for the comparison of pack 2

against pack 3, and the comparison of pack 3 against pack 2.)

To summarize this section, a numerical entry in the qth element

(for q = I to M) of the ith row (for i = 1 to M; i q) of Array DIFFER

strictly indicates the degree of similarity between pack type q and

pack type i. This particular array element represents the comparison

of the component type requirements of pack type q against the component

type requirements of pack type i. The smallest numerical entry in the

ith row represents the pack type that is most similar to pack type i;

the largest entry represents the least similar.

Referring to Example 4.1, if pack type 1, for instance, is first

assigned to a sequencer, pack type 3 is the most similar, unassigned

pack type, with respect to pack type 1, because row 1, column 3

contains the smallest numerical entry (2). This numerical entry of 2
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indicates that, given the seven different component tapes required to

produce pack type 1 are already mounted (b1 = 7), two different

component tapes must be additionally mounted to produce pack types 1

and 2 together on the same sequencer.

Notice that the specific definition of similar capitalizes on the

fixed number of dispensing heads in Example 4.1. The number of

dispensing heads (Ck) for this example equals 10. Assuming again that

pack type 1 is first assigned, pack type 3 is the most similar,

unassigned pack type. Producing pack types 1 and 3 together requires

a total of nine different component tapes. Producing pack types 1 and

2 together requires a total of 7 + 3 = 10 different component tapes.

By utilizing the definition of similar, the number of dispensing heads

required for production is minimized.

After the first M rows of Array DIFFER are formed, the heuristic

algorithm is initiated. The algorithm itself is basically composed of

two parts. In the first part, the algorithm seeks an initial

assignment of pack types to all available sequencers. The computed

sequencer volume capacities (Sk's), with a relatively small constant

inserted in equation (1), ensure that each available sequencer is

assigned at least one pack type in this first production run. In this

thesis, a constant of 10% is inserted to gather the empirical data used

to compare the three different heuristic procedures. If the constant

in equation (1) was fairly large (indicating an unbalanced workload

distribution), the possibility exists that sequenced tapes would not be

assigned to every available sequencer.



54

The second part of the algorithm assigns pack types not previously

scheduled for production until none remain. This second part selects

particular sequencers for multiple production runs based strictly on

their individual production volume requirements. The sequencer with

the fewest total number of incurred component insertions required to

produce all of its previously assigned sequenced tapes is always

selected to make the next production run, if one is required. When the

second part of the algorithm terminates, all pack types are assigned to

one of the available sequencers, and a detailed production schedule is

prepared.

4.3 Heuristic Algorithm - Part One

Generally described, the sequenced tape assignment process begins

in this first part of the algorithm by scheduling the first of L

available sequencers. Similar pack types are consecutively assigned to

this first sequencer until one of two possibilities occurs. The first

possibility is that the number of component types required by the

assigned pack types successively decrements the number of available

dispensing heads such that additional pack types may not be assigned

for this first production run. A sufficient number of unallocated

heads must be available to accommodate the additional, unmounted

component tapes required to produce any unassigned pack type. The

second possibility is that the total number of component insertions

required by the assigned pack types approaches the computed sequencer

volume capacity (Sk), and the scheduling of any additional, unassigned

pack types would violate the volume capacity of this first sequencer.



55

When either of these two possibilities manifests itself, the

algorithm leaves the first sequencer and assigns pack types to another

sequencer by utilizing Array DIFFER. This process is repeated for all

L sequencers. When the final Lth sequencer is being scheduled, the two

possibilities described above may, indeed, occur. For whichever of

these two reasons prevents additional pack types from being assigned to

the Lth sequencer, the algorithm proceeds with the second part.

However, depending on the nature of the component type

requirements of the pack types to be produced, all of the remaining,

unassigned sequenced tapes might be feasibly scheduled on this Lth

sequencer. In this case, the algorithm terminates, thus precluding the

need for the second part of the algorithm. The devised production

schedule would reflect that each sequencer makes one production run

only, thereby indicating that no sequencer change-overs are required.

The detailed description of this first part of the heuristic

algorithm is decomposed into five distinct segments. The first segment

describes the method by which the first pack type is assigned to the L

available sequencers. The second segment describes two bookkeeping

operations performed by the algorithm after the first pack type is

assigned to any of the L sequencers. The third segment describes the

method by which the second pack type is assigned to each of the L

available sequencers. The fourth segment describes a comparison

operation always performed by the algorithm after the second pack type

is assigned to any of the L sequencers. The fifth segment describes

the method by which remaining, unassigned pack types are repeatedly

assigned to each of the L available sequencers until one of the two

Lz V11
an al~rJ ff. 3 q~qe~j ~ *. .-- - IN
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previously mentioned possibilities occurs, upon which the second part

of the heuristic algorithm is necessary, or until all of the pack types

are assigned, in which case, the sequenced tape production schedule is

completed.

Numerous operations and procedures performed in the first part of

this algorithm are also performed in the second part. When these

situations occur, they are subtly identified by the inclusion of the

phrase 'for all production runs.' This terminology indicates that the

operations or procedures presently being described are also applicable

in the second part of the algorithm.

4.3.1 Assignment of the First Pack Type to Sequencers

Two separate rules govern the selection of the first pack type

assigned to each of the L available sequencers. One rule, the starting

rule, governs the selection of the first pack type assigned to the very

first available sequencer. The second rule, the 'least common' rule,

governs the selection of the first pack type assigned to the remaining

L-1 available sequencers. These two rules, and the logic supporting

them, are discussed separately.

The first part of this heuristic algorithm is initiated with a

specific starting rule. This rule states that the first pack type

assigned to the very first available sequencer is that pack type

requiring the fewest total number of different component types. This

starting rule selects that pack type with the smallest bi (for i = 1 to

M). If more than one pack type qualifies for selection according to

this starting rule, the tie is broken arbitrarily.
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The immediate logic supporting this starting rule relates to the

concept that sequenced tapes compete for dispensing heads. Obviously,

the assignment of a pack type requiring the smallest number of

dispensing heads implies that the largest possible number of

unallocated dispensing heads remains. By associating similar pack

types together on the same sequencer, this starting rule should assist

in capitalizing on the fixed number of available dispensing heads, thus

leading to more efficient production schedules.

The selection of the first pack type assigned to the remaining L-1

available sequencers is governed by the 'least common' rule. The

algorithm attempts to assign pack types together on the same sequencer

based on their high degree of similarity. Conversely then, the

algorithm attempts to separate those pack types that have little in

common, in terms of component type requirements, by assigning them to

different sequencers.

Therefore, when the algorithm begins scheduling the remaining L-1

available sequencers, the first pack type selected is that pack type

whose component type requirements are least common with respect to the

component type requirements of all of the pack types already assigned

on all of the previously scheduled seqL-ncers. The logic supporting

this 'least common' rule stems directly from the strategy of separating

dissimilar pack types in order to reduce change-over time.

If the first assigned pack type has little in common with all

previously assigned pack types, then, logically, all of the similar

pack types assigned with this least common pack type should also have

little in common with all previously assigned pack types. In this

2.. -.1
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manner, the strategy of the heuristic approach is embellished. The

'least common' rule is discussed in Chapter 5.

4.3.2 Bookkeeping Operations after Assignment of Pack Types

Two bookkeeping operations performed by the algorithm immediately

after the first pack type is assigned for production to any of the L

available sequencers merit discussion. In reality, these two

operations are intrinsic to the algorithm, and are performed not only

after assignment of the first pack type, but after the assignment of

all pack types. However, there is a deviation in one of the

bookkeeping operations depending on whether a particular pack type is

assigned first to a sequencer, or assigned thereafter. Therefore, the

di:cussion commences concerning the first assigned pack type. The

deviation in the one bookkeeping operation is explained when the

situation warranting that deviation surfaces.

When the production period begins, all of the sequencer dispensing

heads are unallocated, and the production volume requirement (total

number of required component insertions) of each sequencer equals zero.

When a pack type is assigned for production to the kth sequencer, the

number of dispensing heads allocated to produce that assigned pack type

is incremented. The production volume requirement (PVR) of the k th

sequencer is incremented to reflect the total number of component

insertions required to produce that assigned pack type. Notation used

to portray these two operations is as follows:
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Hk - This is the number of dispensing heads allocated to produce all

pack types assigned to the kth sequencer, for a particular

production run. When the kth sequencer undergoes scheduling for

a particular production run, Hk (for k = 1 to L) = 0. Every

time a pack type is assigned to the kth sequencer, the number of

additional component tapes required to be mounted, in order to

produce that pack type, is added to Hk. Recall that Ck is the

total number of available dispensing heads on the kth sequencer.

The algorithm assigns pack types to the kth sequencer until Hk

approaches, but does not violate, Ck.

PVR k - This is the total Production Volume Requirement of the kth

sequencer incurred by the assignment of all of its pack types

over all production runs. In other words, PVRk reflects the

total number of component insertions that sequencer k must make

in order to produce all of its assigned sequenced tapes. Wher

the production period begins, PVP, = 0 (for k = 1 to L'. Every

time a pack type (pack type i is assigned to sequencer g, the

total number of component insertions required to produce pack

type i (called PVPi, is added to Pa k" :r t first part cf

the algorithr, P,'P may not e'cee' ('e mputed V'Jme

capacity of the kth sequencer. 'e sequerer v. ,rr# dp -it

(S Os) are only noc.d~ fo-i,, 4,r-.2 of
e u nce r .

F€e s ( u rf e . w p " ,

restrict the algorithri ii 'e I Pd, " ,

assigns pack types to the O ,("

PVRk approaches, but does not ,i.'*t-
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Therefore, after the first pack type is assigned to the kth

sequencer (for k = 1 to L), the number of allocated dispensing heads

(Hk) is incremented from 0 to the total number of different component

types (bi) required to produce that first assigned pack type i.

Hk,current bi  (2)

The production volume requirement (PVRk) is incremented from 0 to the

production volume requirement (PVR i) of that first assigned pack

type i.

PVRk,current = PVR1 (3)

The algorithm considers these currently updated, incremented values of

Hk and PVP, before it assigns another pack type to the kth sequencer.

By doing so, the algorithm ensures that subsequent scheduling of

unassigned pack types does not violate the sequencer dispensing head

limits C k) nor does it violate the sequencer volume capacity (Sk).

4.3.3 As'nent of the Second Pack Type to Sequencers

Atter the bookkeeping operations are completed, the algorithm

utilize,. only one criterion to select the second pack type assigned to

ail L 'e,iuencers. It selects the unassigned pack type that is most
th

SfI'i tc the *irst pack type already assigned on the k sequencer

rhe d!Y(,r trfT' locates this m.ost sirrilar unassigned
th

p "P#" t "(' J , Y , s-drcrliniy the i row of Array DIFFER, for

t M ,crJrre',lJndin t(. the f'rst assigned pack type i). The

- ' " -' ""€f ' ' : ''i -":" ° "' '' "" "-'#'" f'>" '";"'" ""'' !
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algorithm selects the smallest numerical entry corresponding to an

unassigned pack type (0 is a possible entry).

This smallest numerical entry represents the unassigned pack type

that is most similar to the first assigned pack type in terms of

component type requirements. The notation and appropriate definitions

to identify these numerical entries in the M*M portion of DIFFER are

provided below.

biq - Let bij be the numerical entry in the jth column of the ith

row of Array DIFFER (for j = 1 to M; i = 1 to M; j # i).

bij indicates the degree of similarity between pack types i

and j in terms of their component type requirements. Let biq

= minimum {bij : j = 1 to M; j i. Pack type q, then, is

most similar to pack type i. If biz = maximum (bij; j = 1 to

M; j # i), then pack type z is least similar to pack type i.

If multiple, unassigned pack types appear to be most similar to

pack i (multiple biq'S in the ith row), some computations are performed

to determine which unassigned pack type is actually more similar.

Example 4.2 demonstrates this tie-breaking procedure appropriately.

EXAMPLE 4.2

Suppose that three pack types are to be produced by the kth

sequencer. Pack 1, pack 2, and pack 3 require 10, 10, and 9 different

component types, respectively. Assume that pack I is the first

assigned pack type, and the algorithm is attempting to select the

second, most similar pack type for assignment next (either pack 2

,. ,r s w v, r , , ,-,. , r ,,r, .. ,r, . ,, ,,- , , , .,. -,, ,. , ;., ,; , " , , , -,w ,, , .' .'., ,," ' ',,',' ; . .'..' .' , -. ' ." .
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or 3). The first row of Array DIFFER, corresponding to pack type 1,

and the totals of the different component type requirements of the

three packs (b i , for i = 1 to 3) are shown below.

Packs
1 2 3

Pack 1 4- 4 4 bi = 10; b2 = 10, b3 = 9

The algorithm searches the pack 1 row to find the smallest entry which

corresponds to the most similar, unassigned pack type. Obviously, a

tie exists (or does it?).

Pack 2 requires ten different component types. From the

definition of the term similar, we know that six of those different

component types are also required by pack 1, since 4 is the entry under

pack 2, indicating that four additional component types must be mounted

to produce packs I and 2 together. Pack 3 requires nine different

component types. Five of those are also required by pack 1, for the

same reasons presented with pack 2. These operations demonstrate that

six of ten, or 60," of the different component types required by pack 2

are also required by pack 1. Only five of nine, or 55.6 of the

different component types required by pack 3 are also required by pack

1. The higher percentage indicates a higher degree of similarity.

Therefore, although Array DIFFER reflects the same degree of

similarity between pack 1 and packs 2 and 3 in Example 4.2, these

additional computations actually reveal that pack 2 is, in fact, a

little more similar to pack I than pack 3. This tie-breaking

procedure, termed the Highest Degree of Similarity procedure, or HDOS,
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is used every time the algorithm attempts to select the most similar,

unassigned pack type for a particular production run, and Array DIFFER

indicates that a tie exists. It is possible that even after these

computations are performed, a bonafide tie still exists. In this case,

the tie is broken arbitrarily, since the degree of similarity is

actually identical.

Before the al orithm assigns this second pack type to the kth

sequencer, it verifies that the assignment of this pack type will not

violate the dispensing head limit (Ck), nor volume capacity limit (S,),

of the kth sequencer. The algorithm adds the current number of

allocated heads (Hk) to the number of additional component tapes

required to be mounted to produce the selected pack type (b ). If

H + biq C ,
k kq #

then sufficient, unallocated heads are available to produce this second

pack type on the same production run.

The algorithm adds the current production value r,'uirement (PVP,

to the production value requiremnent of the selected pack type PFV

if

PVR + PVR. S
k i -k'

then the volume capacity for the k th seuerincer will nrt bp e~ceeded if

this second pack type is assigned to that sejuer P,- on the same

production run. If the assignment of this second p(ic +ype to the h

sequencer will, in fact, violate either the dispensinq head limit

or the volume capacity limit (S, ), the algorithm does not assiqn a
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second pack type to sequencer k, and begins scheduling sequencer k + 1

(for k - I to L - 1). This particular event is exceptionally remote,

especially in light of the assumptions considered during the

development of this heuristic approach. However, the method by which

the algorithm treats this peculiar event is addressed in Section 4.3.4.

If neither the dispensing head limit (Ck), nor the volume capacity

limit (Sk), is violated, the algorithm assigns this second pack type

for production to the k th sequencer. Immediately following this

assignment, the algurithm performs its two customary bookkeeping

operations (Section 4.3.,",. The procedure used to increment the

production volume requirement (PePk) of the kth sequencer is identical

to that described in Section 4.3.2. The production volume requirement

of the second assigned pack type fP'Pi , is added to the previous

production volume requirenent of the &th seluencer (PVP, to yield a

current value of PVR,. which reflects the assigrwnent of the secord pac

type.

, jrr ,.nt k ,F'revlouS I

This in(remental procedure, whirn updates the current production volume

requirement (P ol the t sequencer. i', utilized ident iL l 

throughout the entire alq)ri thr , re(jardl,, , O whethpr ont. or two, or

t h
rore than two pa(o t e, a rf, tK uI t e t SpUe ( erfPr

The dev iat ion inr thf- tooo keej)i rnq , er.) li Wti i, t, , ompu.s*el to he

curront number of W ,l1 'I ,i'1 I e l e rlns I h al,', 1 ?ht 0 S P ,iJp ( P'

oc(urs when the se(.ond, and nu p pa, t Ype' are ,,',i q I. When) the
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first pack type is assigned to the kth sequencer, the current number of

allocated dispensing heads (Hk) is exactly equal to the total number of

different component types required to produce that first assigned pack

type (refer to equation (2)). Whenever two, or more pack types are

assigned to the kth sequencer on a particular production run, the

current number of allocated dispensing heads (Hk) equals the sum of the

previous value of Hk, and the number of additional component tapes

required to be mounted (b iq) to produce the most recently assigned pack

type i.

Hk,current = Hk,previous + biq (7)

This incremental procedure, which updates the current number of

allocated dispensing heads (Hk) on the kth sequencer when two, or more

pack types are assigned, is utilized identically throughout the entire

algorithm. The deviation in this bookkeeping operation surfaces only

when the first pack type is assigned to the kth sequencer, in which

case Hk is calculated by equation (2).

4.3.4 Comparison Operation Following Assignment of Second Pack Type

Once the first and second pack types are assigned for production

to any of the L sequencers, the algorithm again searches for a most

similar, unassigned pack type. The first M rows of Array DIFFER are

of no use in this situation. The M*M portion of DIFFER contains

numerical entries indicating the degree of similarity between any two

pack types, of which only one is assigned. Obviously, when two, or

more pack types are previously assigned to the kth sequencer, those

entries are meaningless.
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However, in keeping with the strategy of this heuristic approach,

the algorithm must be capable of locating the unassigned pack type that

is most similar to the aggregation of pack types previously assigned to

the kth sequencer, for a particular production run. The last L rows of

the total M+L rows in Array DIFFER provide the algorithm with a tool to

accomplish this task. The entries in the last L rows of DIFFER are

computed only after the algorithm assigns two, or more, pack types to

the kth sequencer for a particular production run.

The numerical entries in the M+kth row (for k = 1 to L) of Array

DIFFER indicate the degree of similarity between each, unassigned pack

type, and the aggregation of pack types previously assigned to the kth

sequencer, for a particular production run. In other words, the

numerical entries in the M+kth row represent the comparison of the

different component types required by each, unassigned pack type

against the union of different component types required to be mounted

on the kth sequencer in order to produce all of the pack types

previously assigned to that sequencer, for a particular production run.

The method by which the numerical entries in the last L rows of

Array DIFFER are generated is through a procedure involving a specific

comparison operation performed by the algorithm. The first step in

this procedure is to represent the union of different component types

required to produce all previously assigned pack types on the kth

sequencer, for a particular production run, in vector form. The

current number of allocated dispensing heads (Hk) indicates the total

number of different component types required to produce all of the

assigned pack types together. Recall that the input parameter N is the



67

total number of different component types. The algorithm establishes a

one-dimensional vector, which is N elements long. This vector, called

the U vector, is initialized with zeroes.

The algorithm scans the different component types required by all

pack types previously assigned to the kth sequencer for a particular

production run. Let Q represent the set of pack types which are

already assigned to sequencer k. If aij = 1 (for i in set Q; j = 1 to

N), the algorithm places a value of 1 in the jth element of the U

vector. By this method, the Hk different component types required to

produce all previously assigned pack types are represented by the U

vector. The only elements in the U vector with a value of 1 are those

elements corresponding to the different component types required by at

least one of the pack types assigned to sequencer k.

Once the U vector is established, corresponding specifically to

sequencer k for a specific production run, all remaining, unassigned

pack types are compared against it. In other words, the different

component types required to produce each, unassigned pack type are

compared against the different component types represented in the U

vector. This comparison operation is performed in a manner similar to

the comparison operation which generates the numerical entries in the

first M rows of Array DIFFER. Refer to Section 4.2.2.

The results of this comparison operation yield the numerical

entries in the M+kt h row of Array DIFFER (corresponding to the kth

sequencer for which the comparison was conducted). This comparison

operation is conducted every time another pack type is assigned to the

kth sequencer, starting with the second pack type. Therefore, the
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numerical entries in the M+kth row (for k = I to L) of DIFFER indicate

the degree of similarity between each, unassigned pack type, and the

current aggregation of pack types previously assigned to the kth

sequencer for a particular production run. In this manner, the

algorithm is always capable of selecting the most similar, unassigned

pack type as it schedules the L available sequencers.

The only case in which the algorithm does not perform this

comparison operation as it schedules the kth sequencer is in the remote

event that the first assigned pack type is the only pack type that can

be assigned to the kth sequencer for a particular production run. In

this event, since a second pack type is not assigned to the kth

sequencer, the numerical entries in the M + kth row of DIFFER would not

be needed for this first part of the algorithm; hence are not generated

by the comparison operation. However, since the second part of the

algorithm also utilizes the last L rows of DIFFER, we must calculate

these entries any way.

Recall that the numerical entries in the first M rows of DIFFER

indicate the degree of similarity between any two pack types.

Therefore, to generate numerical entries for the M + kth row of DIFFER,

the numerical entries for the M-kth row of DIFFER, given that this

remote event occurs, the numerical entries in the i th row of the M*M

portion of DIFFER (corresponding to the single, first assigned pack
type i) are copied directly into the M-kth row of (corresponding

to the k th sequencer to which the single pack type i is assigned'.

V k*u.asow~*% * ~~~
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4.3.5 Assignment of Remaining Pack Types to Sequencers

The M + kth row of Array DIFFER enables the algorithm to

repeatedly select the most similar, unassigned pack type as it

schedules the kth sequencer for a particular production run. The

algorithm locates the most similar, unassigned pack type by

specifically searching the M + kth row of DIFFER, for k = 1 to L

(corresponding to the kth sequencer currently being scheduled). The

algorithm selects the smallest numerical entry corresponding to an

unassigned pack type (0 is a possible entry). This smallest numerical

entry represents the unassigned pack type that is most similar to the

aggregation of all pack types previously assigned to the kth sequencer

for that particular production run.

The term for the individual numerical entries in the M + kth row

is bq (for k = 1 to L; q = I to M). The definition of bkq is

identical to the definition of biq presented in Section 4.3.3, with one

exception. This exception is that bkq indicates the degree of

similarity between the aggregation of all pack types previous'y

assigned to the kth sequencer for a particular production run, and pack

type q, which is unassigned. Recall that b. indicates the deroe of

similarity only between pack type i and pack type .

Two items specific to the last L rows, or .*1 r "., o ,

DIFFER, are briefly addressed. ,-st, u -e -e "'

M), the M - k row to .t.

numerricl entries. :r *t,'e nu 3 'e

thM k row generated b, s' :'o r% , -

corresponding k" se'juerce, 1 f,',,,,,e , :', . *r
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number of pack types assigned to all sequencers over all production

runs. The reason for this rather unremarkable occurrence is simple. A

numerical entry in the qth column (for q = 1 to M) of the M + kth row

(for k = 1 to L) corresponds to an unassigned pack type q. As the

total number of assigned pack types increases, the total number of

unassigned pack types decreases, thereby decreasing the total number of

elements containing numerical entries.

The second item addressed is the metnod by which the algorithm

breaks a tie when multiple unassigned pack types appear to be most

similar to the current aggregation of previously assigned pac t-yes

(multiple bkq'S in the M - k row,. The al gor ntm im.eme'ts t-e

Highest Degree of Similarity H DCS procedure b, per'or i r Q "

previously described computitiors E-a-c e )r i, tte jna'Qn*: a

types with a value of bk ir that r a * - -

Again, it a tie still etists i i e,- '"e e[, ,- . " '" . "'.

tie is broken arbitrari'O.

Se'Dre the crtr a,~ A**

se•uence r. ve' e, "
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If neither of these two equations is violated, the algorithm

assigns the pack type for production to the k th sequencer. Immediately

following this assignment, the algorithm performs its two customary

bookkeeping operations that we presented through equations (6) and (7)

Section 4.3.:,. We repeat these equations here for ease of reference:

- kFPre u PVR (6)
PkZ-urrert ,previ ous q

., k.- Jryerr = , 0 ,prey i ouS 4 , 7

-re r 'qr tOrr ther perertS tne comparison operation to update the
- kth

rJmr 1e. e,'t;es , r *Oe arr'dte m - k row of DIFFER.

"e Lirrvo-eureK lescr'bed in this section up to this point are

- 'pea'.'.. r tc ., until the algorithm may no longer

-" : t. : . .. L:1 sequencer. As mentioned

.. v ,te requirements of the pack

" t.t a, pack types are scheduled

"c"- the al rithm. In this case, the

J. . " C,, ed, and the second part of

"" ,, r ire other hand, if at this time

" ",;e_ wt , are not yet assigned to the

'. ' ,. ', roceeds with its second part.

. . -. ... . e scheduling process is in

",* " - ('(uci. ol run only, and

S... , -~ ~ ;~s -. S enced tape. The M + kth row

, ' , , .le tne degree of similarity

% *, - - ,* ** % 'a % %- S . ~ ' . *

- a ~. -,



72

between each, unassigned pack type, and the current aggregation of all

pack types assigned to the kth sequencer for the first production run.

PVRk (for k = 1 to L) indicates the total number of component

insertions that the kth sequencer must make in order to produce all of

its assigned corresponding sequenced tapes for the first production

run. Hk (for k = 1 to L) is reset to 0. The remaining sections of

this chapter pertain to the second part of the heuristic algorithm.

4.4 Heuristic Algorithm - Part Two

The sequenced tape assignment process in this second part

resembles much of what is previously outlined in the first part. The

purpose of this second part is to schedule all unassigned pack types

for production. The detailed description of this second part is

decomposed into five distinct segments. The first segment describes

the method by which the available sequencers are selected to make

multiple production runs. The second part describes the method by

which the first pack type is assigned to the selected sequencer. The

third segment describes two bookkeeping operations performed by the

algorithm after the first pack type is assigned. The fourth segment

describes the method by which the second pack type is assigned for

production and describes the comparison operation performed by the

algorithm after the second pack type is assigned. The fifth segment

describes the method by which remaining, unassigned pack types are

repeatedly assigned to the sequencers until all pack types are

scheduled, in which case the sequenced tape production schedule is

completed, and the algorithm terminates.



There is one unique aspect to this second part. Every time d pdco

type is assigned for production, the algorithm performs the customary

bookkeeping operations and immediately determines if any unassigned

pack types remain. In this manner, the algorithm may terminate as soon

as possible.

4.4.1 Selection of Sequencers for Multiple Production Runs

In this second part, the algorithm selects a sequencer to undergo

scheduling based on its current production volume requirement

(PVRk,current). The algorithm always selects that sequencer k (for k =

1 to L) that is required to make the fewest total number of component

insertions up to that stage in the planning horizon in order to produce

all of its previously assigned pack types over all production runs.

The logic behind this selection rule stems from the second of

management's two goals--maintain a relatively balanced workload

distribution. By selecting the sequencer with the smallest incurred

workload to make the next production run, the algorithm does not permit

any sequencer to stray too far from the other available sequencers in

terms of the total number of component insertions.

4.4.2 Assignment of the First Pack Type to Sequencers

There exists only one rule governing the selection of the first

pack type assigned to the sequencer with the smallest production volume

requirement (PRVk). This rule, the 'most common' rule, is in keeping

with the strategy of the heuristic approach, and is discussed in

Chapter 5. Pack types have already been scheduled on each of the L

available sequencers in the first part. The algorithm attempts to
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assign pack types together on the same sequencer based or their high

degree of similarity.

Therefore, the algorithm locates the most common, unassigned pack

type by specifically searching the M + kth row of DIFFER, for k = 1 to

L (corresponding to the kt  sequencer currently being scheduled).

Obviously, one of the definitions of common corresponding to one of the

three different heuristic procedures affects the method by which the

algorithm selects the unassigned first pack type. By searching the M +

k th row of DIFFER, the algorithm locates the unassigned pack type that

is most conmmon to the current aggregation of all pack types on the kth

sequencer dssigned for the production run most recently scheduled. If

a tie exists, the HDOS procedure is implemented as described in Section

4.3.5. If a tie still exists after that, it is broken arbitrarily.

4.4.3 dookkeeping Operations After Assignment of Pack Types

The two bookkeeping operations performed after the first pack type

is assigned for production are also performed in the first part. The

production volume requirement (PVRk) of the kth sequencer being

scheduled is a cumulative total over all production runs, and is

incremented by the production volume requirement of the first assigned

pack type i. Equation (6), Section 4.3.3, is utilized to update the

current total workload:

PVRk,current PVRk,previous + PVR. (6)

The number of allocated dispensing heads (Hk) is incremented from

0 to the total number of different component types (bi) required to

produce that first assigned pack type i. Equation (2), Section 4.3.2,
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is utilized to update Hk:

Hkcurrent = bi  (2)

Immediately after computing PVRkcurrent and Hk,current , the algorithm

determines if any pack types are still unassigned. If this is the

case, the algorithm continues. If not, the algorithm terminates.

4.4.4 Assignment of the Second Pack Type to Sequencers

and the Following Comparison Operation

The operations performed to select the second pack type assigned

to the kth sequencer being scheduled are identical to the operations

described in Section 4.3.3, with one exception. In this second part,

only equation (4) is pre-computed to determine if a second pack type

may be assigned. The reason why equation (5) is not pre-computed is

because a sequencer volume capacity limit (Sk) is not imposed on the

sequencers in this second part. The sequencer being scheduled is

selected based on its smallest total production volume requirement

(PVRk) in comparison to the other sequencer production volume

requirements.

This second part does not guarantee that every sequencer will make

the same number of production runs, as in the first part. At some

point in time, all of the pack types will eventually be scheduled for

production. Because of this uncertainty, the sequencers are permitted

to produce as many sequenced tapes as possible until an insufficient

number of unallocated heads exists, at which time the algorithm selects

the next sequencer for production, if required.
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As usual in this second part, the algorithm updates the number of

allocated dispensing heads (Hk), and the production volume requirement

(PVRk). The algorithm then determines if any unassigned pack types

still remain. If unassigned pack types still remain, the algorithm

performs the comparison operation as described in Section 4.3.4.

4.4.5 Assignment of Remaining Pack Types to Sequencers

The M + kth row of Array DIFFER enables the algorithm to

repeatedly select the most similar, unassigned pack type as it

schedules the kth sequencer for a multiple production run. The

process by which the algorithm selects the remaining, unassigned pack

types, and selects the sequencer to be scheduled for multiple

production runs in this second part, is as described in Sections 4.4.1

through 4.4.4.

The algorithm repeatedly performs these operations on the kth

sequencer (for k = 1 to L) until either all pack types are assigned, or

until the dispensing head limit (Ck) is approached, but not violated.

In the case where the dispensing head limit (Ck) prevents additional
k

pack types from being assigned to the kth sequencer, and not all pack

types have been assigned, the algorithm selects some sequencer k for

another production run based on its smallest incurred production volume

requirement (PVRk). In the case where all pack types are assigned, the

production schedule is completed and the algorithm terminates.

N
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CHAPTER 5

THREE HEURISTIC PROCEDURES

5.1 COMMON Pack Types

The three heuristic procedures developed to provide a solution to

the sequencer scheduli 4/assignment problem differ in only one respect.

Each heuristic procedure enlists a distinct definition of the term

common. Otherwise, the specific algorithm followed by the three

heuristic procedures is identical to that described in Chapter 4. The

purpose of manifold definitions of the term common serves to establish

different relationships between the component type requirements of the

individual pack types.

Recall that the algorithm adheres to the strategy of assigning

similar pack types to the same sequencer. It separates pack types with

little in common, in terms of component type requirements, by assigning

them to different sequencers. It is previously explained in Section

4.2.1 that, with the exception of the very first pack type selected by

the starting rule, the first pack type assigned to the kth sequencer

(for k = 1 to L), for all production runs, is selected by incorporating

one of three definitions of common. The method by which the first

assigned pack type is selected in the first part of the algorithm is

via the 'least common' rule. The logic supporting this rule is

discussed in Section 4.3.1. The method by which the first assigned

pack type is selected in the second part of the algorithm is via the

'most common' rule. The logic supporting this rule is discussed in

Section 4.4.2. To emphasize, the only situation where the term common
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is incorporated is when the algorithm is selecting the first pack type

assigned to sequencers in both parts.

All three definitions of the term common are related to the

definition of the term similar. The operations conducted to determine

the three common relationships between pack types are performed simply

by manipulating the numerical entries indicating the degree of

similarity between pack types in Array DIFFER. The three definitions

of common are explained in the following sections and the operations

performed to determine the common relationship between pack types is

described. The final section of this chapter demonstrates the methods

by which the 'least common' rule is implemented.

5.2 Definitions of COMMON

As mentioned earlier, the three definitions of common are related

to the definition of similar. The precise definition of the term

similar is presented in Section 4.2.1. In short, the degree of

similarity between an unassigned pack type and the assigned pack

type(s) is determined by the number of additional, different component

tapes that must be mounted to produce all of the pack types together.

An unassigned pack type is most similar to the aggregation of assigned

pack types on a particular sequencer if the number of additional,

different component tapes that must be mounted to produce them together

is the fewest number possible.

5.2.1 Most SIMILAR, Most COMMON

The first definition of common is the identical definition of

similar. This definition of common is related to the number of
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additional, different component tapes that must be mounted in order to

produce each, unassigned pack type together with previously assigned

pack types.

When the algorithm searches for the least common pack type in the

first part, it searches over all previously scheduled sequencers to

locate the least common, unassigned pack type with respect to the

component type requirements of all previously assigned pack types. The

method by which the algorithm is capable of doing this is described

later in Section 5.3.

When the algorithm searches for the most common pack type in the

second part, it simply searches the appropriate M + kth row

(corresponding to the kth sequencer selected to be scheduled) which

reflects the current aggregation of all pack types previously assigned

for the most recently scheduled production run.

With this definition of common, the smallest numerical entry in

the M + k th row represents the most common, unassigned pack type, while

the largest numerical entry represents the least common, unassigned

pack type. If the algorithm locates multiple numerical entries that

qualify as least common in the first part, or most common in the second

part, the HDOS procedure is implemented. If a tie still exists, it is

broken arbitrarily. This definition of common is incorporated in the

heuristic procedure named YFIX.

5.2.2 Least SIMILAR, Most COMMON

The second definition of common is the exact inverse of the

definition of similar. This definition of common is related to the

number of different component types that are required by each,
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unassigned pack type and by the aggregation of previously assigned pack

types.

When the algorithm searches for the least common pack type in the

first part, it searches over all previously scheduled sequencers with

respect to the component type requirements of all previously assigned

pack types. When the algorithm searches for the least conmon pack

type in the second part, it simply searches the M kt h  row

(corresponding to the k sequencer sele ted to be sJheduled.

With this definition of common, the numerical entries qenerated by

the comparison operation must be manipulated tol estarlish the corr?',

common relationship. The algorithrr suttracts thp entries in the

elements of the appropriate M kt h row of 2 orrespondinq to

unassigned pack types from the total number of difprept cr)mponert

types (b ) required by each, unassiqned pa(t type. The result'n

values indicate the number of different component types required by

each, unassigned pack type which are also required by the aggregation

of pack types previously assigned. These resulting values are inserted

back into the elements of the M + kth row.

With this definition of co r~ot , the smallest numerical entry in

+kth

the M + k row represents the least common, unassigned pack type,

while the largest numerical entry represents the most common,

unassigned pack type. If the algorithm locates multiple numerical

entries that qualify as least common in the first part, or most common

in the second part, the HDOS procedure is implemented. If a tie still

exists, it is broken arbitrarily. This definition of common is

incorporated in the heuristic procedure named V2YFIX.
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5.2.3 COMMON Pack Types Determined as Proportions

This final definition of common seeks to eliminate an inherent

deficiency in the first two definitions of common. The deficiency in

those two definitions is that the algorithm searches specifically for

either the largest or smallest numerical entry in the M + kth row to

locate either the most or least common unassigned pack type, depending

on whether the algorithm is in its first or second part.

These two definitions do not take into account the total number of

different component types required by each unassigned pack type (bi).

It is this precise deficiency that requires the existence of a

tie-breaking procedure such as the HDOS procedure. This deficiency is

demonstrated by an example.

EXAMPLE 5.1

Suppose that the scheduling process is in the following state:

L = 1 available sequencer.

M = 4 pack types to be produced.

N = 12 total different component types.

Ck = 10 dispensing heads.

Assume that the YFIX heuristic procedure is being used, and the

algorithm just terminated the first part. In that first part, it

assigned two pack types (packs 1 and 3) for production. The total

number of different component types (b i ) required by the four pack

types are 7, 5, 6, and 9, respectively. The numerical entries in the M

+ kth row generated by comparison operation are as follows:

.M-!
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Packs

1 2 3 5

M + kth Row - 2 - 3

The algorithm initiates the second part by scheduling the one

available sequencer for a second production run. The algorithm

searches the M + k th row to locate the most common, unassigned pack

type in order to assign that pack type first for the second production

run. Hash marks are in the row elements of pack types 1 and 3 because

they were assigned for production in the first part. Since the YFIX

heuristic procedure is being used, the most common, unassigned pack

type is that pack type with the smallest numerical entry in the M + kth

row. Manipulation of the entries in the M + kth row are not required

because the YFIX definition of common is identical to the definition of

similar.

Therefore, the algorithm selects pack type 2 as most common, sinct

it is the unassigned pack type with the smallest numerical entry (2).

Some computations reveal, however, that pack type 4 is really more

'common' to the aggregation of pack types 1 and 3.

Since 2 is the entry corresponding to pack type 2, this indicates

that three component types required by pack type 2 are also required by

the aggregation of pack types 1 and 3 together. Therefore, three of

five, or 60% of the component types required by pack type 2 are also

required by pack types 1 and 3 together.

Since 3 is the entry corresponding to pack type 4, this indicates

that six component types required by pack 4 are also required by the



aggregation of pack types I and 3 together. Therefore, six of nine. ,

67- of the component types required by pack type 4 are also reuire( t,

pack types 1 and 3 together.

It is evident that pack type 4 has a viqher proportion )o

different component types in 'common' with pack types I and 3 together.

However, the algorithm does not consider this situation with either tre

YFIX or V2YFIX definitions of common.

Therefore, the final definition of common determines the

proportion of component types required by each, unassigned pack type

with respect to its total number of different component types kb

The algorithm performs this manipulation simply by dividing the

it h entry of the M + kt h row by the total number of different component

types required by each pack type i, bi, for each unassigned pack type.

i = 1 to M. The algorithm inserts these proportion results back into

the M + kt h row. With this definition of common, the smallest

proportion in the M + kth row represents the most common, unassigned

pack type, while the largest proportion in the M + kth row represents

the least common, unassigned pack type.

The reason why the smallest proportion represents the most common,

unassigned pack type is because the numerical entries in the M + kth

row generated by the comparison operation indicate the number of

different component tapes that must be additionally mounted to produce

each, unassigned pack type, and the aggregation of previously assigned

pack types together. This definition of common is incorporated in the

heuristic pr3cedure named PROYFIX. In the PROYFIX heuristic procedure,

the HDOS procedure is not necessary. If the algorithm locates multiple
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asstQned Pav' tpes or a" pre iojsY assigned sequencers. This

pro~eciure is atcomp1 ;sheo throu,h the use of a one-dimensional array,

named Array H(,L. The operations performed to ut lize Array HOLD,

which is M elements long, are identical regardless of which definition

of commor is incorporated.

After the algorithm completely schedules the first sequencer, the

numerical entries in the M - Is t row, generated by the comparison

operation, indicate the degree of similarity between each, unassigned

pack type and the final aggregation of all pack types assigned to that

first sequencer. These numerical entries are manipulated accordingly,

based on the heuristic procedure being utilized, and inserted into the

corresponding elements of Array HOLD.

To locate the least common, unassigned pack type with respect to

the final aggregation of pack types assigned to the first sequencer,

the algorithm specifically searches Array HOLD. Once it locates the

least common, unassigned pack type, the algorithm assigns it to the

second sequencer, and performs the operations described in Sections

4.3.1 through 4.3.5 to completely schedule the second sequencer. The

comparison operation generates numerical entries in the M + 2nd row
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indicating the degree of similarity between each, unassigned pack type,

and the final aggregation of all packs assigned to the second

sequencer.

To locate the least common, unassigned pack type, for assignment

to the third sequencer, with respect to the final aggregation of pack

types previously assigned to the first and second sequencers, the

algorithm would have to search Array HOLD and the M + 2nd row of

DIFFER, whose numerical entries are appropriately manipulated based on

a definition of common.

The algorithm avoids this situation, however, by comparing the

corresponding numerical entries in Array HOLD and the M + 2nd row of

DIFFER. The algorithm compares the numerical entries in the elements

corresponding to the unassigned pack types, and locates that numerical

entry that is indicated to be the most common of the two. The

algorithm inserts the most common numerical entry in the corresponding

element of Array HOLD. Thus, Array HOLD now contains the numerical

entries indicating the most common relationship between each,

unassigned pack type, and the final aggregation of previously assigned

pack types over the two previously scheduled sequencers.

The algorithm then searches Array HOLD and locates the least

common, unassigned pack type indicated by the individual numeri¢3

entries. In this manner, the algorithm, in fact, selects t-

common, unassigned pack type to be scheduled firs: or -'

sequencer.

This procedure is performed every tt ' '

schedules a sequencer, until all L 'iK. .
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Array HOLD always contains the most common numerical entries over all

previously assigned pack types over all previously scheduled

sequencers. By locating the least common, unassigned pack type in

Array HOLD, the algorithm is, in fact, locating the least common pack

type with respect to all previously assigned pack types, over all

previously scheduled sequencers.
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CHAPTER 6

NUMERICAL RESULTS AND CONCLUSIONS

Chapters 3 through 5 provide a detailed description of the

sequencer scheduling assignment problem, and our proposed heuristic

procedure for solving it. In this chapter we present the results of

some numerical experiments with these procedures.

This specific variation of the sequenced tape production

scheduling problem is very complex in nature, and as such, is not even

particularly well defined. We stated earlier that an 'optimal'

solution to this problem would be difficult to obtain, even for the

relatively simple case where only one sequencer is involved. The case

with more than one sequencer is increasingly more difficult.

Ideally, we would like to compare the schedules obtained using

this heuristic approach on a particular set of problems with their

respective 'optimal' schedules. In the absence of a methodology to

obtain, or even properly define, such an optimal schedule, however, it

would not be possible for us to do so. Hence, in this study, we limit

our discussion to a subjective analysis of the performance of this

approach.

The measures of goodness described in Chapter 3 provide some

reference by which different heuristic procedures may be compared with

each other. These measures of goodness serve to gauge the relative

merits of the three heuristic procedures, but they are subject to

interpretation. It cannot be accurately stated, for instance, that a

production schedule requiring each of three sequencers to make two

change-overs apiece is categorically better, or worse, than another

, W W' W W Z W 1. ,e < AX
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production schedule, devised for the same problem, which requires that

the same three sequencers each make one, two, and three change-overs,

respectively.

The nature of the sequencer scheduling/assignment problem is such

that it does not have a readily apparent structure. It is for this

precise reason that the development of an approach which provides a

satisfactory solution is so frustrating. The purpose of this heuristic

approach is to create an adequate form of structure by which a sensible

solution may be obtained.

The framework of the experiment phase incorporating the three

heuristic procedures reflects this lack of analytical certainty. The

method by which the heuristic procedures are validated serves to

demonstrate that the algorithm described in Chapter 4, in fact,

functions very nicely, and that the resulting production schedules

devised for numerous problems are reasonable in light of management's

two production goals. Some trends are observed as various sets of

input parameters are introduced.

The computer programs for the three heuristic procedures are

written in FORTRAN, and run on a VAX 11/750 computer. A listing of the

YFIX heuristic procedure is included in Appendix 8.2. The simulated

data set pertaining to the pack type component requirements closely

resembles actual data for a production environment involving two

sequencers.

The next two sections contain discussion related to the experiment

phase of the three different heuristic procedures, and present summary

computational results.

orI
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6.1 Typical Problems in a Sequencing Environment

The set of simulated data used in conjunction with the numerical

experiments is typical of a sequencing environment in which the total

number of different component types required by each pack type, in most

cases, does not exceed 60 (bi, for i = 1 to M). In fact, a good number

of pack types in this data set require a relatively low number of

different component types (less than 20). For this reason, no more

than two sequencers are generally required for the production of their

corresponding sequenced tapes.

Six typical problems are solved, with the number of pack types to

be produced ranging in number from 20 to 40. These six problems are

solved by all three heuristic procedures. The number of dispensing

heads on the two available sequencers (Ck) is originally fixed at 60.

When a resulting production schedule requires a change-over at this

figure, Ck is increased to 100 (a more typical limit). This type of

reaction to imminent sequencer change-overs realistically reflects the

position of management in their quest for efficient production

operations.

Additionally, the sequencer volume capacity (Sk) of both

sequencers is calculated according to equation (1) in Section 2.3.

Throughout these numerical experiments, we calculate the 'constant'

term in that equation as a percentage of the total production volume.

We let this percentage vary from 5% to 25% in solving the six problems.

This parameter is altered to empirically observe the degree of

sensitivity of the heuristic procedures to these volume constraints.

- N V ° ''' W - V . V V .- '
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The numerical results are presented in Tables 6.1 through 6.6--one

table for each problem. The key to deciphering the tables is described

as follows.

The upper left hand corner indicates the number of available

sequencers (L)i and the total number of pack types scheduled for

production (M). The number of dispensing heads fixed for each

particular problem is listed in the Ck column alongside the name of the

heuristic procedure used to solve that problem. Three different

percentages used in the calculation of Sk are presented in the column

headed 'Sk. A value of 5% restricts the problem, while a value of 25%

relaxes the problem. The five measures of goodness described in

Chapter 3 are presented in columns I through 5 under 'Measures of

Goodness.'

The total number of sequencer change-overs for a given problem is

represented in column 1. The total number of component tape changes

required by all sequencers in a given problem is given in column 2.

The total sequencer production volume requirements are in column 3,

with each entry corresponding to one sequencer. The multi-tiered

entries in column 4 represent the total number of different component

types required by each sequencer to produce all of their assigned

sequenced tapes. Each entry corresponds to one sequencer. The

multi-tiered entries in column 5 represent the total number of

'dedicated' heads on each sequencer. A block marked by a single

hash mark indicates that all available sequencers required only one

production run to produce all of their assigned sequenced tapes.

Therefore, all of the allocated heads could be considered as
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Table 6.1 Problem I

L=2 M = 20 Measures of Goodness CPU

Ck Sk 1 2 3 4 5 (sec)

13 28
5% 0 0 158 180 3 - 2.81

19
YFIX 60 10% 0 0 202 136 28 - 2.52

29
25% 0 0 248 90 23 - 2.54

23

5% 0 0 158 180 13 - 2.51
35

19
V2YFIX 60 10% 0 0 202 136 28 - 2.45

28

25% 0 0 248 90 29 - 2.59
23 -25

13
5% 0 0 158 180 3 " 2.4835

PROYFIX 60 10% 0 0 202 136 19 " 2.54
28

25% 0 0 248 90 33 - 2.58

33I
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Table 6.2 Problem 2

L=2 M = 20 Measures of Goodness CPU

Ck Sk 1 2 3 4 5 (sec)

50/ 1 17 468 280 53 10 2.59
37 - 2

YFIX 60 10% 0 0 412 336 46 - 2.61
50

25% 0 0 412 336 46 - 2.65

5% 1 22 416 332 585 2.57
35 -

V2YFIX 60 10% 0 0 412 336 46 2.6750

46
25% 0 0 412 336 46 - 2.60

5% 1 17 468 280 53 10 2.65
37 -

PROYFIX 60 10% 0 0 412 336 46 2.5850

25% 0 0 412 336 46 - 2.6350

YFIX 100 5% 1 17 468 280 53 10 2.60
37 -

V2YFIX 100 5% 1 22 416 332 58 5 2.61
35 -

PROYFIX 100 5% 1 17 468 280 53 10 2.59
37

j
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Table 6.3 Problem 3

L=2 M : 30 Measures of Goodness CPU

Ck Sk 1 2 3 4 5 (sec)

5% 0 0 538 472 50 - 5.9645

YFIX 60 10% 0 0 538 472 50 - 5.8645

50
25% 0 0 538 472 45 - 5.89

5% 0 0 538 472 5045 - 59

V2YFIX 60 10% 0 0 538 472 50 - 5.9045 - 59

25% 0 0 538 472 50 - 5.9345

5% 0 0 538 472 50 - 5.8945

PROYFIX 60 10% 0 0 538 472 50 - 5.9345

25% 0 0 538 472 50 - 6.00
45
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Table 6.4 Problem 4

L=2 M : 30 Measures of Goodness CPU

Ck Sk 1 2 3 4 5 (sec)

5% 31 498 892 58 -89 16 57

YFIX 60 10% 1 31 498 892 58 -89 16 57

25% 1 31 498 892 58 - 57489 16

5% 2 30 640 750 70 15 5.77
74 9

V2YFIX 60 10% 2 30 640 750 70 15 5.7774 9

25% 1 31 498 892 58 -89 16 57

5% 1 31 498 892 58 -
89 16

PROYFIX 60 10% 1 31 498 892 58 - 5.7689 16 57

25% 1 31 498 892 58 -89 16 5.71

continued
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Table 6.4 (continued)

L=2 M = 30 Measures of Goodness CPU

Ck Sk  1 2 3 4 5 (sec)

5,/1 0 0 722 668 7776 " 6.08
76

YFIX 100 10% 0 0 722 668 - 5.8376

25% 0 0 1024 366 2594 - 5.97

5% 0 0 722 668 7 - 6.00
76

V2YFIX 100 10% 0 0 722 668 - 6.0376

25/ 0 0 1024 366 94 - 6.1325

5% 0 0 722 668 7 - 6.1576

PROYFIX 100 10% 0 0 722 668 7776 " 5.85

250% 0 0 1024 366 94 - 5.9525 - 5.95
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Table 6.5 Problem 5

L=2 M : 40 Measures of Goodness CPU

Ck Sk 1 2 3 4 5 (sec)

5% 1 14 1010 1106 59 - 10.4574 29

YFIX 60 10% 1 14 1010 1106 59 - 10.3974 29 109

25% 1 14 1010 1106 59 - 10.3774 29

5% 1 19 1010 1106 59 - 10.5274 35 105

V2YFIX 60 10% 1 19 1010 1106 59 - 10.4574 35

25, 1 19 1010 1106 59 - 10.4074 35 104

5' 1 19 1010 1106 59 10.3874 35 103

PROYFIX 60 10% 1 19 1010 1106 59 - 10.3074 35 100

59 -
250 1 19 1010 1106 10.3274 35 102

continued
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Table 6.5 (continued)

L=2 M = 40 Measures of Goodness CPU

Ck Sk 1 2 3 4 5 (sec)

5% 0 0 1076 1040 72 _ 10.6569

YFIX 100 10% 0 0 1076 1040 72 - 10.7169

25%0 0 0 1572 544 88 - 10.7855 - 107

5:; 0 0 1076 1040 72 - 10.43
69

V2YFIX 100 10% 0 0 1076 1040 72 - 10.5969

25^1' 0 0 1572 544 88 - 10.78
55

5C 0 0 1076 1040 72 - 10.57
69

PROYFIX 100 100'  0 0 1076 1040 72 - 10.4669

25.i 0 0 1572 544 88 - 10.84
55
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Table 6.6 Problem 6

L=2 M = 40 Measures of Goodness CPU

Ck Sk 1 2 3 4 5 (sec)

5% 2 19 1008 1020 66 31 10.16
67 24

YFIX 60 10 2 19 1008 1020 66 31 10.04
67 24

25% 2 19 1008 1020 66 31 10.3267 24

5% 1 17 1048 980 75 35 10.28
57 -

V2YFIX 60 10% 1 17 1048 980 75 35 10.23
57 -

25% 1 17 1048 980 75 35 10.33
57 -

5% 1 17 1048 980 75 35 10.11
57 -

PROYFIX 60 10% 1 17 1048 980 7 10.33
57 - 103

25% 1 17 1048 980 757 10.26
57 - oI

continued
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Table 6.6 (continued)

L=2 M = 40 Measures of Goodness CPU

Ck Sk 1 2 3 4 5 (sec)

5% 0 0 982 1046 6286 " 10.30

YFIX 100 10% 0 0 1182 846 67 - 10.27
79

25% 0 0 1310 718 70 - 10.5674
5%46 - 10.30

5% 0 0 982 1046 62 _ 10.3086

V2YFIX 100 10% 0 0 1182 846 67 - 10.46
79

251 0 0 1310 718 70 - 10.3674

5/ 0 0 982 1046 62
86 - 10.34

PROYFIX 100 10,% 0 0 1182 846 67 - 10.28
79

25% 0 0 1310 718 70 - 10.5074 " 105

I
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'dedicated,' which is a moot point. A block in column 5 with a

combination of numerical entries and hash marks indicates that some of

the available sequencers make only one production run, while other

sequencers make two or more. The CPU time column is self-explanatory.

Several observations based on the numerical results in these

tables are addressed. First, all of the CPU times are extremely

reasonable. Even when the largest typical problems are run (M = 40),

the CPU time does not exceed 11 seconds. Another observation is that

many of the production schedules are identical for a given problem,

regardless of which heuristic procedure is used. This is easily

distinguishable by observing that all of the numerical entries are the

same for a given problem over all three procedures.

Two of the problems result in production schedules that do not

require any change-overs, regardless of the computed volume capacity,

when the dispensing head limit (Ck) is set at 60 (Tables 6.1 and 6.3).

Table 6.2, however, illustrates a situation where the computed volume

capacity greatly affects the production schedule. Notice that the

three procedures are run twice with a restricted volume capacity

constant (50). When 10% and 25% are inserted, 60 dispensing heads are

sufficient to produce all of the assigned pack types without requiring

a change-over.

Even with 100 dispensing heads, this particular problem required

one sequencer change-over with the volume capacity constant set at 5'.

This type of result indicates that managerial policy, with respect to

efficient production operations, ought to consider the distribution of

total workload as a contributing factor, possibly more so than an

increase in the number of dispensing heads.
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The final observation pertains to the relationship, or lack

thereof, between the volume capacity constants and the balance of

workload distribution across the sequencers. The great majority of the

resulting production schedules reflect that the distribution of

workload remaing relatively balanced, regardless of the volume capacity

constant (up to 25%). Obviously, a higher volume capacity constant

could affect the outcome.

6.2 Specifically Difficult Problems in a

Sequencing Environment

In order to exercise the algorithm completely, numerous large

problems were concocted. Pack types were selected for these problems

based on their large number of total different component types (bi ) 1i

required for production. The logic supporting this plan is that it

seems reasonable to assume that pack types with large bi values will

tend to be more diversified with respect to their component

compositions.

Tables 6.7 and 6.8 contain the numerical results corresponding to

two selected problems. These two problems are quite typical of all

problems we have solved in this category, and the results obtained are

quite similar.

Table 6.7 presents a large problem consisting of 35 pack types.

The numerical results in this table reflect only those production

schedules devised with a volume capacity -onstant (Sk) of 10%. This is

the most typical of the three constants used, and it illustrates the

problem adequately. Each procedure solved this particular problem with

dispensing head limits set at both 60 and 100. In addition, each

procedure solved this problem with 2 and 3 available sequencers.
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Table 6.7 Problem 7

Measures of Goodness
M = 35 CPU

Ck Sk 1 2 3 4 5 (sec)

L=2 60 10% 9 226 4032 3428 96 23 7.14145 0

100 10% 2 66 4026 3434 98 - 7.84
YFIX 18 1

95 16
L=3 60 10% 8 205 2608 2760 2092 132 1 6.99

84 21

85 -

100 10% 1 30 3166 1832 2462 100 - 7.43
122 40

L=2 60 10% 9 238 3480 3980 111 15 6.96148 0 69

100 10% 2 60 4026 3434 98 -
V2YFIX 148 12 7.67

92 13
L=3 60 10% 8 216 2318 2284 2858 131 2 6.94

114 4

85 -

100 10% 1 28 3166 1466 2828 96 - 7.41
126 45

continued
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Table 6.7 (continued)

Measures of Goodness
M =35 ________________ CPU

Ck. Sk 1 2 3 4 5 (sec)

Lz2 60 10% 9 227 3484 3976 107 16 7.01148 0

POFl 100 10% 2 60 4026 3434 148 12 7.60

91 24
L=3 60 10% 8 196 2586 2420 2454 137 1 6.89

81 18

85 -

100 10%/1 1 45 3166 2788 1506 141 45 7.50
87 -
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Table 6.8 Problem 8

Measures of Goodness
M =40 CPU

Ck Sk 1 2 3 4 5 (sec)

5% 3 94 5186 4342 114 53 10.36152 25 103

YFIX 100 10% 3 94 5186 4342 114 53 9.98152 25

L=2 25% 3 94 5186 4342 114 53 9.98152 25

5% 3 105 5030 4498 130 61149 23 105

V2YFIX 100 10% 3 105 5030 4498 130 61 10.14149 231

L=2 25% 3 105 5030 4498 130 61 10.32149 23 102

5% 3 105 5030 4498 130 61 10.11149 23 101

PROYFIX 100 10% 3 105 5030 4498 130 61 10.14149 23 104

L=2 25% 3 105 5030 4498 130 61 9.72
149 23

continued
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Table 6.8 (continued)

Measures of Goodness
M = 40 CPU

Ck Sk 1 2 3 4 5 (sec)

89 -

5% 2 61 3594 3308 2626 152 8 10.03
99 -

93 -

YFIX 100 10% 2 48 3960 2462 3106 136 63 9.99
106 28

99 -

L=3 25% 2 66 4222 3336 1970 140 29 10.09
96 -

89 -
5% 2 70 3594 2336 3598 133 56 10.05

132 53

93 -

V2YFIX 100 10% 2 67 3960 2336 3232 133 56 9.88
129 54

99 -

L=3 25% 2 70 4222 2174 3132 131 55 10.39
121 52

89 -

5% 2 71 3594 3944 1990 140 55 9.82
121 58

93 -
PROYFIX 100 10% 2 67 3960 2336 3232 133 56 10.01

129 54

99 -

L=3 25/ 2 80 4222 2512 2794 140 51 10.12
129 49
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The interesting aspect of this problem is the fact that a strict

increase in the number of sequencers does not necessarily result in a

much more efficient production schedule. A large reduction in the

total number of change-overs (column 1) occurs when the number of heads

on the currently available sequencers increases. Merely introducing

another sequencer into the situation does not appear to reduce the

number of change-overs substantially.

The problem represented in Table 6.8 enforces the issue broached

by the problem in Table 6.7. This particular problem serves to reveal

that every production schedule devised for this problem has

approximately the same total number of change-overs because the number

of dispensing heads for each sequencer is fixed at 100. Regardless of

the computed volume capacity alterations (Sk = 5%, 10% and 25%), or the

number of sequencers available for production (L = 2 and 3), the number

of change-overs only reduces from three to two. This small reduction

is in stark contrast to the substantial reduction brought about by

increasing the number of dispensing heads on the currently available

sequencers in Table 6.7.

6.3 Conclusions

As mentioned earlier in this chapter, the purpose of this

heuristic approach is to provide some sort of reasonable solution to

the sequencer scheduling/assignment problem. This heuristic approach

attempts to make sense out of a difficult problem (in this case, a

variation of the sequenced tape production scheduling problem that is

not well defined).

L ,J , ¢ e , -
'

-
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It appears that this approach does provide some structure to the

problem. Indeed, given a particular problem from the set of simulated

data, production schedules are devised that attempt to make the total

amount of change-over time small and maintain a relatively balanced

workload distribution. In this respect, the algorithm performs very

well.

The algorithm does schedule all pack types to be produced for a

particular problem, and it does so in a reasonable amount of CPU time.

It is easily envisioned that a production supervisor could utilize

these procedures prior to a planning period, and, in a short time span,

determine a production schedule in order to produce all pack types in

a reasonally efficient manner.

The algorithm performed well on large sets of data. Recall from

Chapter 2 that the Fathi/Taheri IP model required roughly 46 minutes to

solve an incredibly small problem. Overall, the heuristic algorithm

does do what it is intended to do.

A final conclusion relates to the three different heuristic

procedures. As evidenced by the numerical results in the tables,

production schedules devised by the three procedures for the same

problem vary little, if at all. This indicates that the different

definitions of the term common may not be so different from each other.

This fact is not alarming in that there are only so many ways by which

to compare pack types to each other.

6.4 Avenues for Further Research

It is clear that the sequenced tape production scheduling problem

is combinatorial in nature and, as such, is riddled with nuances that
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are not well explained. A vital key for success to more efficiently

confront this problem is to achieve a better definition of the problem.

Until a better understanding of this particular problem is ascertained,

individuals faced with this problem are at a decided disadvantage.

With respect to the heuristic approach developed for this problem,

a further investigation into this type of approach may result in even

better strategies. Because of the fact that a heuristic solution

cannot be compared to an 'optimal' one, the relative merits of a

heuristic approach are difficult to determine.

Other measures of goodness can be identified in order to develop

more reliable heuristic procedures. This area stems back to the not

particularly well-defined problem of realizing when an optimal solution

is achieved. In this case, we don't know how close we are, or how

close we can get. The single most intriguing aspect of the sequenced

tape production scheduling problem is that its structure is not readily

apparent. When the exact structure of this problem is understood, a

smoother, more straightforward path towards achieving an optimal

solution will be much more accessible. A practical approach for

accomplishing this is to conduct many more numerical experiments. In

this manner, the mechanisms which cause the algorithm to perform in a

certain way may be intensely scrutinized. Different strategies which

might favorably impact on the efficiency of the algorithm could also be

investigated.
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C APPENDIX 8.1 MATRIX GENERATOR FOR LINDO
C
C

C
C THIS MATRIX GENERATOR SUBROUTINE FORMULATES THE FATHI/TAHERI
C INTEGER PROGRAMMING MODEL OF THE SEQUENCER ASSIGNMENT PROBLEM.
C THIS SUBROUTINE NAME IS 'USER'.

C

C
C
C VARIABLE DEFINITION:

C
C VNAME- 8 ELEMENT INTEGER ARRAY CARRYING DESCRIPTION OF VARIABLES.
C IVAR- INTEGER VARIABLE THAT KEEPS COUNT OF THE NUMBER OF DECISION
C VARIABLES GENERATED BY THE FORMULATION.
C NONZ- INTEGER VARIABLE DENOTING THE NUMBER OF TIMES A PARTICULAR
C DECISION VARIABLE WILL APPEAR IN A FORMULATION.

C VAL- 42 ELEMENT REAL ARRAY CARRYING ALL COEFFICIENTS OF ANY
C PARTICULAR VARIABLE.
C IRO- 42 ELEMENT INTEGER ARRAY CARRYING ALL OF THE ROWS IN WHICH ANY
C PARTICULAR VARIABLE WILL APPEAR IN THE FORMULATION. ARRAYS
C VAL AND IRO CORRESPOND SO THAT THE COEFFICIENT OF VARIABLE

C Xjk STORED IN VAL(I) WILL APPEAR IN ROW IRO(1).
C ALFANM- 36 ELEMENT INTEGER ARRAY CARRYING THE DIGITS 0 THRU 9 AND
C THE 26 LETTERS OF THE ALPHABET.
G A- AN M*N MATRIX ASSOCIATING COMPONENT TYPE j TO PACK TYPE i.
C A '1' DENOTES THAT COMPONENT TYPE j IS REQUIRED ON PACK TYPE i;
C A '0' DENOTES THAT IT IS NOT REQUIRED. i - I.. .M; j - I.. .N.
C B- A 40 ELEMENT INTEGER ARRAY STORING THE TOTAL NUMBER OF DIFFERENT
C COMPONENT TYPES REQUIRED TO PRODUCE PACK TYPE i. EACH ARRAY
C ELEMENT STORES THE TOTAL FOR ONE SPECIFIC PACK TYPE i.

C Bi - SUMMATION Aij ; (Aij - 0 or 1).
C BPRIME- A 40 ELEMENT INTEGER ARRAY STORING THE TOTAL NUMBER OF

C COMPONENTS REQUIRED TO PRODUCE PACK TYPE i.
C FOR THESE TEST PROBLEMS, BPRIMEi = Bi + 5.
C V- A 40 ELEMENT INTEGER ARRAY STORING THE TOTAL NUMBER OF EACH
C PACK TYPE i REQUIRED TO BE PRODUCED.
C VOLUME- A 40 ELEMENT INTEGER ARRAY STORING THE TOTAL NUMBER OF
C COMPONENTS REQUIRED TO PRODUCE ALL OF EACH PACK TYPE i.
C (VOLUMEI - BPRIMEi * Vi).

C C- A 6 ELEMENT REAL ARRAY STORING THE NUMBER OF AVAILABLE HEADS
C ON SEQUENCER k; k - 1.. .L.
C S- A 6 ELEMENT REAL ARRAY STORING THE TOTAL NUMBER OF COMPONENTS
C THAT SEQUENCER k IS PERMITTED TO INSERT TO PRODUCE ALL OF ITS

C ASSIGNED SEQUENCED TAPES.
C L- INTEGER DENOTING THE NUMBER OF AVAILABLE SEQUENCERS.
C M- INTEGER DENOTING THE NUMBER OF PACK TYPES REQUIRED

C TO BE PRODUCED.
C N- INTEGER DENOTING THE NUMBER OF COMPONENT TYPES REQUIRED TO
C PRODUCE ALL PACK TYPES.
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C MAXL- INTEGER VARIABLE DENOTING THE MAXIMUN NUMBER OF
C SEQUENCERS ALLOWED.

C MAXM- INTEGER VARIABLE DENOTING THE MAXIMUM NUMBER OF
C PACK TYPES ALLOWED.
C MAXN- INTEGER VARIABLE DENOTING THE MAXIMUM NUMBER OF
C COMPONENT TYPES ALLOWED.
C BLANK- INTEGER VARIABLE DENOTING A BLANK SPACE.

C III2,I3- 3 INTEGER VARIABLES USED TO DESCRIBE WHICH DECISION
C VARIABLE IS BEING CHARACTERIZED AT ANY GIVEN TIME.
C ITEMP, JTEMP, KTEMP- 3 INTEGER VARIABLES USED FOR TEMPORARY

C STORAGE OF VALUES.
C IN- LOOP CONTROL VARIABLE USED WHEN LOOPING OVER PACK TYPES (M).
C IN- LOOP CONTROL VARIABLE USED WHEN LOOPING OVER COMPONENT TYPES (N).
C IL- LOOP CONTROL VARIABLE USED WHEN LOOPING OVER SEQUENCERS CL).
C CONCON- (COMPONENT CONSTANT): AN INTEGER CONSTANT ADDED TO ALL Bi
C TO COMPUTE ALL BPRIMEi. (BPRIMEi - Bi - CONCON).
C LDCON- (LOAD CONSTANT): AN INTEGER CONSTANT USED TO COMPUTE ALL Sk.

C Sk = (SUMMATION i=l.. .M, (Vi*BPRIMEi)/L + LDCON).

C TRUBLE- LOGICAL VARIABLE; TRUBLE IS RETURNED .TRUE. IF A PROBLEM
C OCCURS; ie. IF AN OUT-OF-SPACE CONDITION EXISTS WHEN
C LINDO SUBROUTINES 'DEFROW' OR 'APPCOL' ARE CALLED.
C
C

C

SUBROUTINE USER
C
C *********d*****************************.**.**l***.*.**...**.*.l.ll..**

C
C DECLARATION OF VARIABLES:

C
DIMENSION VNAME(8), VAL(42), IR0(42), ALFANM(36), VOLUME(40)
DIMENSION A(40,400), B(40), BPRIME(40), V(40), S(6), C(6)

LOGICAL TRUBLE
INTEGER VNAME, IRO, ALFANM, BLANK, NONZ, A, B, BPRIME, VOLUME

INTEGER V, L, N, N, IN, IN, IL, COMCON. LDCON, IVAR
INTEGER I1, 12, 13, ITEMP, JTEMP, KTEMP, MAXL, MAXM, MAXN

REAL C, S, VAL
C
C

C
C DEFINE 'BLANK' AND ARRAY 'ALFANM'

C

DATA BLANK/' 'I/
DATA ALFANM/'O','1 ','2','3','4','5','6','7','8','9',

+ 31N3, '0', 'P' , 'Q', R , '5', 'T', 'U', 'V' , 'W' ,'X', 'Y',' /

C
C INITIALIZE 'COMCON' AND SET UPPER BOUNDS FOR NUMBER OF

C SEQUENCERS (L), NUMBER OF PACK TYPES (M), AND NUMBER OF COMPONENT

C TYPES (N).
C
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CONCON - 6
C MAX NUMBER OF SEQUENCERS (L)
MAXL - 6
C MAX NUMBER OF PACK TYPES (M)
MAXm - 40
C MAX NUMBER OF COMPONENT TYPES (N)
MAXN - 400

C

C
C READ IN KNOWN DATA
C
C OPEN DATA FILE
OPEN(UNIT-7 ,FILE-'DATA.DAT' , STATUS-'OLD')

C
C READ NUMBER OF SEQUENCERS(L), NUMBER OF PACK TYPES(M), AND NUMBER "
C OF COMPONENT TYPES(N).

C
READ(?,*) LMN
C CHECK TO SEE THAT L,M. AND N DO NOT EXCEED UPPER BOUNDS
C
IF (L GT. MAXL) WRITE (*.1o00) MAXL
IF (M ,GT. MAXM) WRITE (*,1001) MAXM
IF (N .GT. MAXN) WRITE (*,1002) MAXN
C
1000 FORMAT (.' PROGRAM TERMINATED - NUMBER OF SEQUENCERS (L)

+ EXCEEDS MAX ALLOWED:'. 4)
1001 FORMAT (/,' PROGRAM TERMINATED - NUMBER OF PACK TYPES (M)

+ EXCEEDS MAX ALLOWED:'. I5)

1002 FORMAT (/,' PROGRAM TERMINATED - NUMBER OF COMPONENT TYPES (N)
+ EXCEEDS MAX ALLOWED:', I6)

IF((L .GT. MAXL) .OR. (M GT. MAXN) OR. (N .GT. MAXN))GO TO 99
C
C READ NUMBER OF EACH PACK TYPE TO BE PRODUCED(Vi).

READ(,*) (V(IM), IN - 1,N)
C READ NUMBER OF HEADS AVAILABLE ON EACH SEQUENCER(Ck).
READ(7,*) (C(IL), IL - 1,L)

C READ MATRIX 'A'
DO 5 IN - 1,M

READ(7,*) (A(IM,IN), IN 1,N)
6 CONTINUE
C READ LDCON

READ (7,*) LDCON
C
C CLOSE DATA FILE
CLOSE (UNIT-7)

C
C ALL KNOWN DATA IS ENTERED

C
C
C
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C COMPUTE ALL Di, BPRIMEi * VOLUNi AND Sk AND STORE RESULTS IN
C ARRAYS 'B'. 'UPRIME'. 'VOLUME' AND 'S' RESPECTIVELY.
C
DO 10 IN =l,M

B(IM) - 0
DO 15 IN - 1,N

B(IM) - B(IM) + A(IM.IN)

15 CONTINUE
BPRINE(IM) - B(IM) + COMCON

10 CONTINUE
C
DO 20 IL - 1,L

SCIL) - 0.
DO 25 IK - 1.M

VOLUME(IM) - V(IM)*BPRIME(IM)

S(IL) - SCIL) +FLOAT(VOLUNE(IN))

25 CONTINUE
S(IL) - S(IL)/FLOAT(L) +FLOAT(LDCON)

20 CONTINUE
C
C ARRAYS 'B', 'BPRIME'. 'VOLUME', AND 'S' ARE FILLED
C
C

C
C PRINT LXMN AND LDCON AND ARRAYS 'B', 'BPRIME', 'V', 'VOLUME',
C 'S'. AND 'C'
C
C OPEN OUTPUT FILE

OPEN(UNIT=15,FILE='PARAM.DAT' ,STATUS='NEW')
C
WRITE (15,2000) L,M,N,LDCON
WRITE (15,2001) (B(IM), IN - 1,M)
WRITE (15,2002) (BPRINE(IM), IM - 1,M)
WRITE (15,2003) (VIM), IN - 1,M)
WRITE (15,2004) (VOLUMECIM), IN - 1,M)
WRITE (15,2005) (S(IL), IL - 1,L)
WRITE (15,2006) (C(IL), IL - 1,L)
C
2000 FORMAT ('0', 'L-',12,3X,'M=',13,3X,'N-',I4,3X.'LDCON-',I7)

2001 FORM4AT ('0', 'ARRAY B:'. 15(lX,13))
2002 FORMAT ('0', 'ARRAY BPRIME:', 10(lX,15))
2003 FORMAT ('0', 'ARRAY V:'. 15(IX,I3))
2004 FORMAT ('0', 'ARRAY VOLUME:', 10(IX,I5))
2005 FORMAT ('0'. 'ARRAY S:'. 6(1X,F1O.2))
2006 FORMAT ('0', 'ARRAY C:', 6(1X,F5.1))
C
C CLOSE OUTPUT FILE
C CLOSE(UNIT-15)
C
C

C



115

C INITIALIZE THE ROWS OF THE FORMULATION
C
C
C
CALL INIT
C
C OBJECTIVE ROW
CALL DEFROW(1,0. ,IDROW,TRUBLE)

C
C PACK-TYPE/SEQUENCER CONSTRAINTS
DO 40 IN - I.M

CALL DEFROW(0,1. ,IDROWTRUBLE)
40 CONTINUE

C
C LOAD BALANCINu CONSTRAINTS
DO 50 IL - I.L

CALL DEFROW(1.S(IL) ,IDROWTRUBLE)
50 CONTINUE
C
C HEAD UTILIZATION CONSTRAINTS
DO 60 IL - 1.L

CALL DEFROW(-1,C(IL),IDROW,TRUBLE)
60 CONTINUE

C
C COMPONENT/SEQUENCER CONSTRAINTS

DO 70 IN - 1,M
DO 80 IL - 1,L

CALL DEFROW(-l,O. ,IDROW,TRUBLE)
80 CONTINUE
70 CONTINUE
C
C ROW DEFINITION COMPLETE
C
C
C VARIABLE DESCRIPTION - GENERATE THE 'Y' DECISION VARIABLES

C
C l s **l**l*i*l*i*l***************I i i *ii * *ii * ii i * i *

C
C PREPARE ARRAY 'VNAME' FOR THE 'Y' VARIABLES
C
VNANE(1) - ALFANM(35)
VNAME(5) - BLANK
VNAME(6) - BLANK
VNANE(7) - BLANK
VNANE(8) - BLANK
IVAR - 0

NONZ - 4
C
C DETERMINE THE 'i' SUBSCRIPT OF 'Yik' BY SETTING I1 AND 12 - 2 DIGITS
C OF THE PACK TYPE (i -1...M).
DO 100 IN - l,M
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II - IN/1O
12 - IM-Il10

C

C PL.ACE 11,12 IN THlE VARIABLE NAME
VNAME(2) - ALFANM(Il+l)
VNAME(3) - ALFANM(12+1)

C
C DETERMINE THE 'k' SUBSCRIPT OF 'Yik'

DO 200 IL - 1,L
VNAME(4 - ALFANM(IL+10)

C
C OBJECTIVE COEFFICIENT

VAL(1 - 0.
IRO(1) - 1

C
C PACK-TYPE/SEQUENCER CONSTRAINTS

VAL(2) - 1.
IRO(2) - 1+IM

C
C LOAD BALANCING CONSTRAINTS

VAL(3 - FLOAT(V(IM)*BPRIMECIM))
IRO(3 - 1+N+IL

C
C COMPONENT/SEQUENCER CONSTRAINTS

VAL(4) - -FLOAT(B(IM))
IRO(4 - j+M+2*L+L*(IM-1)+IL

C
C PLACE THE 'Y' VARIABLES IN THEIR CORRECT ROWS
C

CALL APPCOL(VNAME, NONZ ,VAL, IR , TRUBLE)

IVAR - IVAR 1
C
C SET AN UPPER BOUND OF '1' FOR ALL 'Y' VARIABLES

C

CALL SETSUB(IVAR,1.)
C
200 CONTINUE

100 CONTINUE
C
C GENERATION OF ALL 'Y' DECISION VARIABLES IS COMPLETE
C
C

C
C GENERATE THE 'X' DECISION VARIABLES

C
C

C
C PREPARE ARRAY 'VNAME' FOR THE 'X' VARIABLES

C
VNAME(1) - ALFANM(34)

NONZ - 14+2
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C
C DETERMINE THE 'J' SUBSCRIPT OF 'Xjk' BY SETTING 11.12, AND
C 13 - 3 DIGITS OF THE COMPONENT TYPE (j 1 1.. .N).
DO 300 IN - 1,N

I1 - IN/ba0
ITEMP - IN-IlabOo
12 - ITEMP/lO
13 - ITEMP-I2.b0

C
C PLACE 11,12,AND 13 IN THE VARIABLE NAME

VNANE(2) - ALFANM(I1~1)
VNAME(3 - ALFANN(12+1)
VNANE(4 - ALFANM(13+1)

C
C DETERMINE THE 'k' SUBSCRIPT OF 'Xjk'

DO 400 IL - 1,L
VNANEC5) - ALFANMCIL+10)

C
C OBJECTIVE COEFFICIENT

VAL(1 - 1.
IRO(1 - 1

C
C HEAD UTILIZATION CONSTRAINTS

VAL(2) - 1.
IRO(2) - 1+M+L+IL

C
C COMPONENT/SEQUENCER CONSTRAINTS

JTEMP - M.+2
DO 500 IN -3,JTEMP

KTEMP =IM-2

VAL(IM) - FLOAT(A(KTEMP.IN))
IRO(IM) - 1+M+2*L+L*(IM-3)+IL

500 CONTINUE
C
C PLACE THE 'X' VARIABLES IN THEIR CORRECT ROWS
C

CALL APPCOL(VNAME. NONZ ,VAL, IRO, TRUBLE)
IVAR - IVAR 1

C
C Fr'T AN UPPER BOUND OF '1' FOR ALL 'X' VARIABLES
C

CALL SETSUB(IVAR.1.)
C
400 CONTINUE
300 CONTINUE
C
C GENERATION OF ALL 'X' DECISION VARIABLES IS COMPLETE
C THE MODEL FORM4ULATION IS COMPLETE. END OF SUBROUTINE 'USER'.
C
RETURN
gg END
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C APPENDIX 8.2 YFIX HEURISTIC PROCEDURE
C
C *.

C
C
C THIS 'YFIX' HEURISTIC PROCEDURE DEVISES A PRODUCTION SCHEDULE
C OF SEQUENCED TAPES FOR THE SEQUENCER SCHEDULING/ASSIGNMENT PROBLEM.

C
C
C

C
C VARIABLE DEFINITION:
C

C

C THE FOLLOWING VARIABLES ARE TYPE 'INTEGER' --
C
C VOLUME( ) CONTAINS TOTAL# OF COMPONENTS REQUIRED TO PRODUCE ALL
C UNITS OF EACH PACK TYPE.
C A( ) : THIS IS MATRIX 'A' WHICH SHOWS WHICH COMPONENT TYPES ARE
C REQUIRED BY EACH PACK TYPE.
C B( ) CONTAINS THE TOTAL# OF DIFFERENT COMPONENT TYPES REQUIRED
C BY EACH PACK TYPE.
C BPRIME( , ) : CONTAINS THE TOTAL# OF EACH COMPONENT TYPE REQUIRED
C BY EACH PACK TYPE.
C HEADS( ) : CONTAINS THE NUMBER OF DISPENSING HEADS ON EACH SEQUENCER.
C L : INTEGER DENOTING THE NUMBER OF AVAILABLE SEQUENCERS.
C M : INTEGER DENOTING THE NUMBER OF PACK TYPES TO BE PRODUCED.
C N : INTEGER DENOTING THE NUMBER OF COMPONENT TYPES.
C IMIN,IL,JM : LOOP CONTROL VARIABLES.
C DIFFER( , ) : (M+L)*M MATRIX REPRESENTING THE DEGREE OF SIMILARITY
C BETWEEN PACK TYPES.
C FIXED( ) : ARRAY USED TO FILL THE FIRST 'N' ROWS OF ARRAY 'DIFFER'.
C COMP( ) : ARRAY USED TO COMPARE PACK TYPES.
C SMALL : INTEGER REPRESENTING A NUMERICAL ENTRY IN ARRAY 'DIFFER'.
C INDEX INTEGER REPRESENTING A SELECTED OR ASSIGNED PACK TYPE.
C REMAIN( ) : CONTAINS THE NUMBER OF UNALLOCATED HEADS ON SEQUENCERS.
C ALCATE( , ) : INDICATES THE ASSIGNMENT OF PACK TYPES TO SEQUENCERS.
C V( ) : CONTAINS THE NUMBER OF EACH PACK TYPE TO BE PRODUCED.
C UNION( ) : THIS IS THE 'U' VECTOR INDICATING THE AGGREGATION OF
C DIFFERENT COMPONENT TYPES REQUIRED BY A SEQUENCER
C FOR A PARTICULAR PRODUCTION RUN. .9
C ITEMP : TEMPORARY VARIABLE USED TO DUPLICATE 'INDEX'. 1A

C NEXT : INDICATES THE APPROPRIATE M+kth ROW OF ARRAY 'DIFFER'.
C LOAD( ) : CONTAINS THE CURRENT PRODUCTION VOLUME REQUIREMENT
C OF EACH SEQUENCER.
C SUM : INTEGER DENOTING THE CURRENT NUMBER OF ASSIGNED PACK TYPES.
C LIGHT : REPRESENTS THE SEQUENCER WITH THE SMALLEST CUMULATIVE
C TOTAL PRODUCTION VOLUME REQUIREMENT IN PART TWO.
C KEY : REPRESENTS THE SEQUENCER BEING CURRENTLY SCHEDULED IN PART TWO.
C MAX : THE TOTAL# OF ROWS IN ARRAY 'DIFFER'.
C TOTAL( ) : CONTAINS TOTAL# OF COMPONENTS REQUIRED TO PRODUCE ONE

9.
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C UNIT OF EACH PACK TYPE.
C ORDER( ) CONTAINS THE PACK TYPES, IN ASCENDING ORDER, WHICH ARE
C DESIGNATED TO BE PRODUCED.
C BOARD : REPRESENTS AN INDIVIDUAL PACK TYPE.
C COMPNT : REPRESENTS AN INDIVIDUAL COMPONENT TYPE.
C NUM : THE NUMBER OF EACH COMPONENT TYPE REQUIRED BY AN INDIVIDUAL
C PACK TYPE.
C OHAUL( ) CONTAINS THE TOTAL# OF CHANGE-0VERS REQUIRED BY
C EACH SEQUENCER.
C TRACK( * . ) INDICATES THE PACK TYPES ASSIGNED TO EACH SEQUENCER
C FOR EACH PRODUCTION RUN.
C MAXRUN THE TOTAL# OF PRODUCTION RUNS MADE BY A SEQUENCER.
C HOLD( ) REPRESENTS THE DEGREE OF COMMONALITY BETWEEN EACH
C UNASSIGNED PACK TYPE, AND THE AGGREGATION OF PREVIOUSLY
C ASSIGNED PACK TYPES.
C MOST : INDICATES THE NUMBER OF COMPONENT TYPES REQUIRED BY EACH
C UNASSIGNED PACK TYPE AND THE AGGREGATION OF PREVIOUSLY
C ASSIGNED PACK TYPES ON A PARTICULAR SEQUENCER FOR A
C PARTICULAR PRODUCTION RUN.
C VOLTOT THE TOTAL# OF COMPONENT INSERTIONS REQUIRED TO PRODUCE
C ALL OF THE ASSIGNED PACK TYPES.

C EQUAL THE VOLUME CAPACITY OF EACH SEQUENCER'S FIRST PRODUCTION RUN.
C COTYPE( , , ) INDICATES THE COMPONENT TYPES REQUIRED BY EACH
C SEQUENCER FOR EACH PRODUCTION RUN.
C COUNT INTEGER VARIABLE USED TO KEEP COUNT.
C TYPE( ) CONTAINS THE COMPONENT TYPES REQUIRED BY EACH SEQUENCER
C FOR EACH PRODUCTION RUN.
C SPACES( , ) CONTAINS THE NUMBER OF COMPONENT TYPES REQUIRED BY
C EACH SEQUENCER FOR EACH PRODUCTION RUN.
C LDCON : THE VOLUME CAPACITY CONSTANT USED TO CALCULATE THE
C SEQUENCER VOLUME CAPACITY IN PART ONE.
C SEQTOT( ) CONTAINS THE TOTAL# OF COMPONENT TYPES REQUIRED BY
C EACH SEQUENCER TO MAKE ALL OF IT'S PRODUCTION RUNS.
C OTHER( , ) CONTAINS THE NUMBER OF COMPONENT TAPE CHANGES
C REQUIRED BY EACH SEQUENCER BETWEEN CONSECUTIVE

C PRODUCTION RUNS.
C INTSEC( ) CONTAINS THE NUMBER OF DEDICATED DISPENSING HEADS
C ON EACH SEQUENCER.
C INITIM CPU TIMER VARIABLE.

C
C THE FOLLOWING VARIABLES ARE TYPE 'LOGICAL' --
C
C FILLED USED TO FILL THE FIRST 'M' ROWS OF ARRAY 'DIFFER'.
C PACK( ) INDICATES WHEN A PACK TYPE IS ASSIGNED FOR PRODUCTION.
C PACK2( ) INDICATES WHEN A PACK TYPE IS ASSIGNED FOR PRODUCTION
C IN PART TWO OF THE ALGORITHM.
C
C

C SUBROUTINE DEFINITION:
C

C
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C RESULT SELECTS THE 'LEAST' OR 'MOST' COMMON UNASSIGNED PACK TYPE.

C
C ASSIGN ASSIGNS A PACK TYPE TO A SEQUENCER, UPDATES ARRAY 'PACK',

C UPDATES PVRk. INDICATES THE SEQUENCER AND PRODUCTION RUN
C TO WHICH A PACK TYPE IS ASSIGNED, AND UPDATES THE TOTAL

C NUMBER OF ASSIGNED PACK TYPES.
C
C NEXPAC : SELECTS THE MOST SIMILAR UNASSIGNED PACK TYPE.
C
C COMPARE : ESTABLISHES THE 'U' VECTOR.
C
C NEWDIF UPDATES THE APPROPRIATE M+kth ROW OF ARRAY 'DIFFER'.

C
C
C DECLARATION OF VARIABLES:
C
C
INTEGER VOLUME(40), A(40,210), B(40), BPRIME(40,210), HEADS(6)

INTEGER L. M, N. IM, IN, IL, IM, DIFFER(46.40), FIXED(210)
INTEGER COMP(210), SMALL, INDEX, REMAIN(6), ALCATE(6.40), V(40)

INTEGER UNION(210), ITEMP, NEXT, LOAD(6), SUN, LIGHT, KEY. MAX

INTEGER TOTAL(40), ORDER(40), BOARD, COMPNT. NUN, OHAUL(6)

INTEGER TRACK(6,10,40), MAXRUN, HOLD(40), MOST, VOLTOT, EQUAL
INTEGER COTYPE(6,1O,210). COUNT, TYPE(210), SPACES(6,10), LDCON
INTEGER SEQTDT(6), OTHER(6, 10), INTSEC(6), INITIM

LOGICAL FILLED. PACK(40), PACK2(40)

C
C
C READ IN KNOWN DATA

C

C
C SET SEQUENCER VOLUME CAPACITY CONSTANT (5%=20, 10%=10, 25%-4)

LDCON - 10
C

C OPEN DATA FILES
OPEN(UNIT-10.FILE='KNOWN.DAT' ,STATUS-'OLD')

OPEN(UNIT-11,FILE-'INPUT.DAT' ,STATUS-'OLD')
OPEN(UNIT-12,FILE-'SUBSET.DAT',STATUS"'OLD')

C

C READ IN L,M,N, V(M), HEADS(L), ORDER(M)

C
READ(10,.*) L,M.N
READ(10,*) (V(IM), IN = 1,M)
READ(0,.) (HEADS(IL), IL = 1,L)
READ(12,i) (ORDER(IM), IN - I,M)

C
C READ IN THE TYPE (COMPNT), AND NUMBER OF EACH TYPE (NUN). OF
C COMPONENT REQUIRED BY EACH PACK TYPE TO BE PRODUCED (BOARD)

C
4000 READ(11.1000.END=4200) BOARD. COMPNT, NUN
DO 5 IN - 1,M
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IF(BOARD EQ. ORDER(IK)) GO TO 4100

I(IX .EQ. N .AND. BOARD .GT. ORDER(IM)) GO TO 4200

6 CONTINUE

GO TO 4000
C
C FILL MATRIX 'A' AND MATRIX 'BPRIKE'
C4100 A(IN.COPNT)*- 1

BPRINE(INCOMPNT) - NUN
GO TO 4000
C
C CLOSE DATA FILES

4200 CLOSE(UNIT-10)

CLOSE(UNIT-11)
CLOSE(UNIT-12)
C
C INITIALIZE ARRAYS 'PACK' AND 'PACK2', AND COMPUTE ALL Bi, TOTALi,

C VOLUMEi. THE TOTAL PRODUCTION VOLUME REQUIREMENT (VOLTOT), AND
C THE SEQUENCER VOLUME CAPACITY PERMITTED IN THE FIRST RUN (EQUAL).

C
DO 10 IM - l,M
C p.

PACK(IK) - .TRUE.
PACK2(IM) = .TRUE.

C
B(UM) - 0
TOTAL(IM) = 0
DO 16 IN 1 1,N

B(UM) - e(Ig) + A(IMIN)

TOTAL(IM) - TOTAL(IK) + BPRIME(IM,IN)
15 CONTINUE
C
C CHECK THAT THE NUMBER OF COMPONENT TYPES REQUIRED BY PACK(IK) IS
C GREATER THAN ZERO AND NOT GREATER THAN 100. (ie. 0 < B(IM) <- 100)

C
IF (S(IK) .EQ. 0 .OR. B(UM) .GT. 100) THEN

WRITE(*,1012) ORDER(IM), B(UM)

GO TO 9900
ENDIF

10 CONTINUE
C
1012 FORMAT (, ' PROGRAM TERMINATED - NUMBER OF COMPONENT TYPES

+ REQUIRED BY PACK',14,' EQUALS',14)

C
VOLTOT - 0
DO 20 IM- 1,M

VOLUME(IM) - V(IM)*TOTAL(IK)

VOLTOT - VOLTOT + VOLUME(IM)
20 CONTINUE

EQUAL - VOLTOT/L + VOLTOT/LDCON

C

,, , , .r ,r ,r,. ,' ,' K . e, ,,'.,''., 'w'¢V'N/" w'=:" "".;: ' ' : " ' 'e, ' ' ' ; ' ' 'ey -,' '; ' ' ' ' ' .' 1
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C END OF DATA ENTRY AND DATA MANIPULATION

C
C START THE CPU TIMER

IF(.NOT. LIB$INITTIMER(INITIM)) GO TO 9900
C
C
C FILL THE FIRST 'M' ROWS OF ARRAY 'DIFFER'
C
C
DO 26 IN - 1.M

FILLED - FALSE.
DO 30 JI - 1,.

IF(JM .EQ. IN) THEN
DIFFER(IN,JN) - 500

ELSE
DIFFER(IN,JM) - 0

DO 35 IN = 1,N
IF(.NOT. FILLED) FIXED(IN) = A(IM,IN)
COMP(IN) = A(JM,IN)

IF(FIXED(IN) .EQ. 0 .AND. COMP(IN) .EQ. 1) THEN
DIFFER(IM,JN) - DIFFER(IM,JM) I

ENDIF
35 CONTINUE
FILLED = .TRUE.

ENDIF
30 CONTINUE

25 CONTINUE
C
C
C
C

C PART ONE OF THE HEURISTIC ALGORITHM -

C DETERMINES INITIAL ASSIGNMENT OF PACK TYPES FOR EACH SEQUENCER
C
C
C
C
C OPEN OUTPUT FILE
OPEN(UNIT-21,FILE-'INFO.DAT' ,STATUS-'NEW')

C
C INITIALIZE THE NUMBER OF PACKS ASSIGNED (SUM), THE MAXIMUM NUMBER OF
C PRODUCTION RUNS ALLOWED (MAXRUN), THE STARTING PRODUCTION VOLUME
C REQUIREMENT OF EACH SEQUENCER (LOAD), AND THE NUMBER OF CHANGE-
C OVERS MADE BY EACH SEQUENCER.

C
SUM - 0
MAXRUN - 10
DO 50 IL - 1,L

LOAD(IL) - 0
OHAUL(IL) - 0
DO 56 JM = I,MAXRUN

U a" "' "" ' """"""""".""" (" :""" " """ ": .... " _ K. 2- " " :" "



123

DO 60 IN - 1,N

COTYPE(IL,JM.IN) - 0
60 CONTINUE
5 CONTINUE
60 CONTINUE

C
C SELECT THE FIRST PACK TYPE FOR ASSIGNMENT ON EACH SEQUENCER *
C
DO 100 IL - 1,L

NEXT - M + IL
IF(IL .EQ. 1) THEN

SMALL - 500
ELSE

SMALL - 0
ENDIF

C
C USE THE STARTING RULE FOR THE FIRST SEQUENCER *

C

DO 105 IN =IM
IF(IL .EQ.1) THEN

IF(B(IM) .LT. SMALL) THEN
INDEX - IM

ITEMP - INDEX
SMALL = B(IM)

ENDIF
C
C USE THE 'LEAST COMMON' RULE FOR THE LAST L - I SEQUENCERS *
C

ELSE
C
C FILL ARRAY 'HOLD' WITH THE 'MOST COMMON' UNASSIGNED PACK TYPES *
C

IF(DIFFER(NEXT-1,IM) .LT. HOLD(IM))
+ HOLD(IM) = DIFFER(NEXT-l,IM)

C
C SELECT THE 'LEAST COMMON' UNASSIGNED PACK TYPE *

C
IF(HOLD(IN) .GT. SMALL .AND. PACK(IM)) THEN

SMALL - HOLD(IM)
CALL RESULT (INDEX,IMITEMP,SMALL,MOST,B(IM))

ELSE
C
C IF A TIE EXISTS, IMPLEMENT THE HDOS PROCEDURE *

C
IF(HOLD(IM) .EQ. SMALL AND.

+ (W(IN) - SMALL) .LT. MOST) THEN
CALL RESULT (INDEXIM,ITEMP,SMALL,MOST,B(IM))

ENDIF

C

ENDIF
ENDIF
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105 CONTINUE
SMALL - B(INDEX)

C
C THE FIRST PACK TYPE IS SELECTED *** ******s..****.**********

C
C NOTE THE PACK TYPE SELECTED, AND IT'S CORRESPONDING Bi
C WRITE(21,*) I I
C WRITE(21,1006) INDEX, SMALL. MOST
C
C ASSIGN THE PACK TYPE TO THE kth SEQUENCER AND UPDATE PVRk ******

C
CALL ASSIGN(VOLUME(INDEX),ORDER(INDEX).LOAD(IL).SUM,

+ ALCATE(IL,INDEX),PACK(INDEX),TRACK(ILIINDEX))

C
C CHECK IF ALL PACKS ARE ASSIGNED *****************************

IF(SUM EQ. M) THEN

DO 10 IN - 1,N
IF(A(INDEX,IN) .EQ. 1) COTYPE(IL,1,IN) - I

107 CONTINUE
GO TO 9000

ENDIF
C

C UPDATE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk) *
C
REMAIN(IL) - HEADS(IL) - SMALL
C
C NOTE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk)
C WRITE(21,1010) IL, REMAIN(IL)
C

C LOCATE THE 'MOST SIMILAR' UNASSIGNED PACK TYPE *
C

SMALL - 500
DO 110 IN - 1,M

C
CALL NEXPAC(PACK(IM),DIFFER(ITEMPIM),SMALL,INDEX,

+ MOSTB(IM),IM)

C
110 CONTINUE
C
C NOTE THE PACK TYPE SELECTED, AND IT'S CORRESPONDING Bi
C WRITE(21,1005) INDEX, SMALL, MOST
C
C CHECK IF THIS UNASSIGNED PACK TYPE CAN BE ASSIGNED GIVEN THE
C CURRENT Hk AND PVRk ************************** **********
C
IF((REMAIN(IL) - SMALL) .CE. 0 .AND.

+ (LOAD(IL) + VOLUME(INDEX)) LE. EQUAL) THEN

C

C ASSIGN THE PACK TYPE TO THE kth SEQUENCER AND UPDATE PVRk ******
C

CALL ASSIGN(VOLUME(INDEX),ORDER(INDEX),LOAD(IL),SUM,

12 *6 C
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ALCATE(IL,INDEX) ,PACK(INDEX) ,TRACK(IL,1,INDEX))
C
C UPDATE THE NUMBER OF UNALLOCATED HEADS (Ck - ilk) **********

C
REMAIN(IL) - REMAIN(IL) - SM4ALL

C
C NOTE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk)
C WRITE(21,1010) IL, REMAIN(IL)
C
C INITIALIZE ARRAY 'UNION'

DO 112 IN - 1,N

UNIONCIN) - 0
112 CONTINUE
C
C IF THIS UNASSIGNED PACK TYPE CANNOT BE ASSIGNED GIVEN THE CURRENT
C Hk AND/OR PYRk. COPY THE APPROPRIATE ith ROW OF 'DIFFER' INTO
C THE APPROPRIATE M+kth ROW. AND BEGIN SCHEDULING THE NEXT SEQUENCER.
C
ELSE

DO 115 IN - 1,M

DIFFER(NEXT,IN) - DIFFER(ITEMP.IM)
IF(NEXT .EQ. (M+1)) HOLOCIM) = DIFFER(NEXT,IN)

115 CONTINUE
DO 117 IN - 1,N

COTYPECIL.1.IN) = A(ITEMP,IN)
117 CONTINUE
C

GO TO 100
ENDIF

C
C WHEN TWO OR MORE PACKS ARE ASSIGNED TO THE SAM~E SEQUENCER,
C PERFORM THE COMPARISON OPERATION ****s**.**~*

C
5000 DO 120 IN - 1,M

IF(ALCATE(IL,IM) .EQ. 1) THEN
DO 125 IN = 1,N

C

CALL CONPARE(A(IM,IN),UNIOII(IN),COTYPE(IL,1,IN))
C
125 CONTINUE

ENDIF
120 CONTINUE
C
C CHECK IF ALL PACKS ARE ASSIGNED

IF(SUA EQ. N) GO TO 9000
C
C NOTE THE 'U' VECTOR
C WRITE(21,*) 'ARRAY UNION:'
C WRITE(21,1003) (UNION(IN),IN - 1,N)

C

DO 130 IN - 1,M

F Ez
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IF(PACK(IN)) THEN

DIFFER(NEXT.IM) - 0

DO 135 IN - I.N

C
CALL NEWDIF(COMP(IN) ,A(IM,IN) ,UNION(IN),

+ DIFFER(NEXT.IM))

C
135 CONTINUE

ELSE
DIFFER(NEXT,IM) - 500

ENDIF
130 CONTINUE

C
C COMPARISON OPERATION IS COMPLETE****s****.ssi.*****
C
C NOTE THE UPDATED M+kth ROW OF ARRAY 'DIFFER,

C WRITEC21,*)II
C WRITE(21,*) 'DIFFER:'

C WRITE(21,1002) (DIFFERCNEXT,IM), IM = 1,M)

C WRITE(21,*)
C
C LOCATE THE 'MOST SIMILAR' UNASSIGNED PACK TYPE
C
SM4ALL - 500
DO 140 IM - 1,M
C

CALL NEXPAC(PACK(IM) ,DIFFER(NEXT, IM) ,SMALL, INDEX,
+ MOST,B(IM),IM)

C
140 CONTINUE
C
C NOTE THE PACK TYPE SELECTED, AND IT'S CORRESPONDING Bi
C WRITE(21.1005) INDEX, SMALL, MOST
C
C CHECK IF THIS UNASSIGNED PACK TYPE CAN BE ASSIGNED GIVEN THE
C CURRENT ilk AND PVRks**************s********

C
IFCCREMAIN(IL) - SMALL) .GE. 0 .AND.

+ (LOAD(IL) + VOLW4E(INDEX) LE. EQUAL) THEN

C
C ASSIGN THE PACK TYPE TO THE kth SEQUENCER AND UPDATE PVRk .*'..

C
CALL ASSIGN(VOLUME(INDEX) .ORDER(INDEX) ,LOAD(IL),SUM,

+ ALCATE(ILINDEX) ,PACK(INDEX) ,TRACK(IL. 1,INDEX))

C

C UPDATE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk) ***.*'*...

C
REMAINCIL) - REMAINCIL) - SMALL

C
C NOTE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk)
C WRITEC21,1O10) IL, REMAINCIL)



127

C
C PERFORM THE COMPARISON OPERATION. CONTINUE THIS LOOP UNTIL
C THE kth SEQUENCER IS FULLY SCHEDULED ********e* ************
C

GO TO 5000
ENDIF
C
C INITIALIZE ARRAY 'HOLD' AFTER THE FIRST SEQUENCER IS SCHEDULED ***
C
IF(NEXT .EQ. (M+l)) THEN

DO 146 IN - 1,M
HOLD(IM) - DIFFER(NEXTIM)

145 CONTINUE
ENDIF
C
C NOTE ARRAY 'HOLD'
C WRITE(21,*) 'HOLD:'

C WRITE(21.1002) (HOLD(IM), IN - 1,M)
C WRITE(21.*) '

C
C CONTINUE THIS LOOP UNTIL ALL SEQUENCERS ALL FULLY SCHEDULED *********
C

100 CONTINUE
C

C *********s* ********b*b******b ****** *a* .eimtill****.* *... *is

C
C PART ONE OF THE HEURISTIC ALGORITHM IS COMPLETED. EACH SEQUENCER HAS
C AN INITIAL ASSIGNMENT OF PACK TYPES FOR ONE PRODUCTION RUN.
C
C ***************i**A.******i***t*i...************

C ****e.****e****.************* ***a**..**..a*..**.*..*a.a

C
C PART TWO OF THE HEURISTIC ALGORITHM -
C SCHEDULES ANY REMAINING UNASSIGNED PACK TYPES

C
C *

C * ** bssegsiii sl **i * *,********...***,,s..,***

C
C SELECT THE SEQUENCER WITH THE SMALLEST CUMULATIVE PVRk,for k- 1 to L,

C TO MAKE MULTIPLE PRODUCTION RUNS ******a** a** *.a****.*********
C

6000 KEY - I
LIGHT - LOAD(l)
DO 200 IL - 2,L

IF(LOAD(IL) .LT. LIGHT) THEN

KEY - IL

LIGHT - LOAD(IL)
ENDIF

200 CONTINUE
C
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C NOTE THE SEQUENCER SELECTED, AND IT'S CORESPONDING PVRk
C WRITE(21,1006) KEY, LIGHT

C
C RECORD THE NUMBER OF CHANGE-OVERS MADE BY THE kth SEQUENCER ******
C
OHAUL(KEY) - OHAUL(KEY) + 1
C
C SELECT THE FIRST PACK TYPE FOR ASSIGNMENT ON THE kth SEQUENCER
C USING THE 'MOST COMMON' RULE *****..*...**.**************...
C
SMALL - 500
DO 205 IN - 1,M
C

CALL NEXPAC(PACK(IM) ,DIFFER(M+KEY, IM) ,SMALL, INDEX,
+ MOST,B(IM),IM)

C
205 CONTINUE
SMALL - B(INDEX)
C
C THE FIRST PACK TYPE IS SELECTED ************s*********i*****
C
C NOTE THE PACK TYPE SELECTED, AND IT'S CORRESPONDING Bi
C WRITE(21,1005) INDEX, SMALL, MOST
C
C ASSIGN THE PACK TYPE TO THE kth SEQUENCER AND UPDATE PVRk *****
C
CALL ASSIGN(VOLUME(INDEX), ORDER(INDEX),LOAD(KEY), SUM.

+ ALCATE(KEY, INDEX), PACK(INDEX), TRACK(KEY, OHAUL(KEY) +1, INDEX))
PACK2(INDEX) - FALSE.
C
C DETERMINE THE COMPONENT TYPES REQUIRED FOR THE ASSIGNED PACK TYPE ***

C
DO 207 IN - 1,N

IF(A(INDEX.IN) .EQ. 1) COTYPE(KEY,OHAUL(KEY)+I,IN) - 1
207 CONTINUE

C
C CHECK IF ALL PACKS ARE ASSIGNED *

IF(SUM .EQ. M) GO TO 9000
C
C INITIALIZE ARRAY 'UNION'
DO 212 IN - I.N

UNION(IN) - 0
212 CONTINUE
C
C UPDATE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk) *****'**.*****

C
REMAIN(KEY) - HEADS(KEY) - SMALL
C
C NOTE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk)
C WRITE(21,1010) KEY, REMAIN(KEY)

C
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C UPDATE THE APPROPRIATE M+kth ROW OF 'DIFFER' *********.**.****
C

DO 210 IN - 1,M

IF(PACK(IM)) THEN
DIFFER(M+KEY,IM) - DIFFER(INDEXIM)

ELSE

DIFFER(M+KEYIM) - 500
ENDIF

210 CONTINUE
C
C NOTE THE UPDATED M+kth ROW OF ARRAY 'DIFFER
C WRITE(21.*) 'DIFFER:'
C WRITE(21,1002) (DIFFER(M+KEY,IM), IN - 1,M)

C WRITE(21,*)
C

C LOCATE THE 'MOST SIMILAR' UNASSIGNED PACK TYPE **********aa*****
C
7000 SMALL - 500

DO 215 IN - 1,M
C

CALL NEXPAC(PACK(IM) .DIFFER(M+KEY. IM) ,SMALL, INDEX,
+ MOST.B(IM), IM)

C

215 CONTINUE
C
C NOTE THE PACK TYPE SELECTED, AND IT'S CORRESPONDING Hi
C WRITE(21,1005) INDEX, SMALL, MOST
C

C CHECK IF THIS UNASSIGNED PACK TYPE CAN BE ASSIGNED GIVEN THE

C CURRENT Hk *************************.s**********************
C
IF((REMAIN(KEY) - SMALL) .GE. 0) THEN

C

C ASSIGN THE PACK TYPE TO THE kth SEQUENCER AND UPDATE PVRk ********

C

CALL ASSIGN(VOLUME(INDEX) ,ORDER(INDEX) ,LOAD (KEY),SUM,
+ ALCATE(KEY, INDEX) ,PACK(INDEX), TRACK(KEY,OHAUL(KEY)+1 ,INDEX))

PACK2(INDEX) - FALSE.

DIFFER(M+KEY,INDEX) - 500
C

C UPDATE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk) *

C
REMAIN(KEY) - HEADS(KEY) - SMALL

C

C NOTE THE NUMBER OF UNALLOCATED HEADS (Ck - Hk)

C WRITE(21,1010) KEY, REMAIN(KEY)

C
C PERFORM THE COMPARISON OPERATION **** ********** **
C

DO 220 IN - I,M
IF(.NOT. PACK2(IM)) THEN
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IF(ALCATE(KEY,IM) .EQ. 1) THEN

DO 225 IN - 1.11
C

CALL COMPARE(A(IM.IN) ,UNION(IN),
+ COTYPE(KEY,OHAUL(KEY)+1 ,IN))

C
225 CONTINUE

iNDIF
ENDIF

220 CONTINUE
C
C CHECK IF ALL PACKS ARE ASSIGNED *****a****s***.**g

IF(SUN EQ. N) GO TO 9000
C
C NOTE THE 'U' VECTOR
C WRITE(21,*) 'ARRAY UNION:'
C WRITE(21.1003) (UNION(IN), IN =1,N)
C

DO 230 IM - 1,M
IF(PACK(IM)) THEN

DIFFER(M+KEY,IM) -0
DO 235 IN - 1,N
C

CALL NEWDIF(COMP(IN) ,ACIN.IN) ,UNIONCIN).
+ DIFFER(M+KEY, IN))

C
235 CONTINUE

ENDIF
230 CONTINUE
C
C COMPARISON OPERATION IS COMPLETE *******~****.*..**

C
C NOTE THE UPDATED M+kth ROW OF ARRAY 'DIFFER'
C WRITE(21,*) '

C VWRITE(21,*) 'DIFFER:'
C WRITE(21,1002) (DIFFER(M+KEY,IM), IN - 1,M)
C WRITE(21,*)

C
C CONTINUE THIS LOOP UNTIL EITHER Ck PREVENTS ANY OTHER PACK TYPES
C FROM BEING ASSIGNED, OR UNTIL ALL PACK TYPES ARE ASSIGNED .**.

C
GO TO 7000

ELSE

DO 240 IN - 1,M
PACK2(IM) - .TRUE.

240 CONTINUE

GO TO 6000
ENDIF

C
C STOP THE CPU TIMER
9000 IF(.NOT. LIB$SHOW-TIMER(INITIN)) GO "0 9900
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C
C
C
C
C PART TWO OF THE HEURISTIC ALGORITHM IS COMPLETED. ALL PACK TYPES
C ARE SCHEDULED FOR PRODUCTION
C
CC ***.***************************.*******************...********

C
C PRINT THE INPUT PARAMETERS, KNOWN DATA, DEVISED PRODUCTION SCHEDULE.
C AND ASSOCIATED PRODUCTION SCHEDULE CHARACTERISTICS.
C
WRITE(21.1001) L, M, N
WRITE(21,1019) VOLTOT, EQUAL
WRITE(21,*) 'ARRAY V:'

WRITE(21,1002) CV(IN), IN- 1,N)
WRITE (21,* I I

WRITE(21,*) 'ARRAY HEADS:'
WRITE(21,1002) (HEADS(IL), IL - I,L)
WRITE(21.*)
WRITE(21,*) 'ARRAY ORDER:'
WRITE(21,1002) (ORDERCIM), IN - 1,M)
WRITE(21,*)
WRITE(21.*) 'ARRAY B:'
WRITE(21.1002) (WCIN), IN- 1,M)
WRITE(21.I)
WRITE(21,*) 'ARRAY TOTAL:'
WRITE(21,1004) (TOTAL(IM), IN - 1,M)
WRITE(21,*)
WRITE(21,.) 'ARRAY VOLUME:'
WRITE(21,1004) (VOLUME(IM), IN - 1,M)
WRITE(21.,*)
WRITE(21,*) 'TOTAL WORKLOAD PER SEQUENCER IS:'
WRITE(21,1004) (LOAD(IL), IL - 1,L)
C LOOK AT ARRAY 'DIFFER' IF SO DESIRED
C MAX - N + L
C WRITE(21,*)

C WRITE(21,*) 'ARRAY DIFFER:'
C DO 902 IN - 1,MAX
C WRITE(21,1002) (DIFFER(IM.M). JM - 1,M)
C902 CONTINUE
WRITE(21,.)

C
C PRINT THE TOTAL NUMBER OF SEQUENCED TAPES PRODUCED (SUM) *
WRITE(21,1008) SUM
WRITE(21.*)'THE TOTAL NUMBER OF CHANGE-OVERS PER SEQUENCER IS:'
WRITE(21,1002) (OHAUL(IL), IL - 1,L)
C
C PRINT THE PACK TYPES ASSIGNED TO EACH SEQUENCER FOR EACH RUN *
DO 260 IL - I,L
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NAXRUN - ORAUL(IL) + I
DO 265 JR - 1iMAXRUN

WRITE(21,10M3 IL,JM
WRITE(21.1014) (TRACKCIL,JN.IM).IM - 1,M)

265 CONTINUE
260 CONTINUE
C
C PRINT THE COMPOJIENT TYPES REQUIRED BY EACH SEQUENCER FOR EACH RUN '

DO 300 IL - 1,L
KAXRJN - ORAUL(IL) +
DO 305 JR - 1.MAXRUN f

COUNT - 0
DO 310 IN - 1,N

IF(COTYPE(IL,JM.IN) .EQ. 1) THEN
COUNT -COUNT +1I
TYPECCOUNT) - IN

ENDIF
C RE-INITIALIZE ARRAY 'UNION' FOR LATER OUTPUT

UNION(IN) -0

310 CONTINUE
SPACES(ILJN) -COUNT

WRITE(21,1016) IL, JR. COUNT
WRITE(21,1017) (TYPECIN). INI - ICDUNT)

305 CONTINUE
300 CONTINUE
C
C PRINT ALL OF THE COMPONENT TYPES REQUIRED BY EACH SEQUENCER TO
C PRODUCE ALL OF THEIR ASSIGNED SEQUENCED TAPES
DO 320 IL- 1,L

COUNT -0
DO 325 IN - 1,M

IF(ALCATE(ILIN) .EQ. 1) THEN
DO 330 IN - 1,N

IF(ACIM,IN) .EQ. 1) UNIOh(IN) - 1
330 CONTINUE

ENDIF
325 CONTINUE

DO 335 IN - 1,N
IF(UNION(IN) .EQ. 1) THEN

COUNT - COUNT + I
TYPE(COUNT) - IN

ENDIF
C RE-INITIALIZE ARRAY 'UNION' FOR LATER OUTPUT

UNION(IN) - 0
335 CONTINUE

SEQTOT(IL) - COUNT
WRITE(21,1018) IL. COUNT
VKITE(21,1017) (TYPE(IN), IN -1,COUNT)

320 CONTINUE
C
DO 350 IL - 1,L
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MAXUN -OHAUL(IL) + I
INTSEC(IL) -0
OTHER(IL,l) -0

IF( MAX RUN .EQ. 2) THEN
SMALL - SPACES(IL,1)
IF(SPACES(IL,2) -LE. SMALL) SMALL =SPACES(IL,2)
DO 355 IN - 1,N

IF((COTYPE(IL.1.jN) +COTYPE(IL.2.IN)) .EQ. 2) THEN
INTSECU(L) - INTSEC(IL) + 1
SM4ALL - SMALL - 1

ENDIF
355 CONTINUE

OTHER(IL,2) - SMALL
GO TO 350

ELSE
IF(MAXRUN .GE. 3) THEN

DO 360 3M - 1,MAXRUN
COUNT - 0
DO 365 IN - I.N

IF(COTYPECIL,JM,IN) .EQ. 1)UNIONCIN)=UNIoN(IN)+1
IF(JM .LE. (MAXRUN-1)) THEN

IF(COTYPE(IL.JM,IN) +COTYPE(IL,JM+1,IN)
+ -EQ. 2) THEN
COUNT - COUNT + 1
OTHER(IL,JM+1) - SPACES(IL,JK+1) - COUNT

ENDIF
ENDIF

365 CONTINUE
360 CONTINUE

DO 370 IN - 1,N
IF(UNION(IN) .EQ. MAXRUN) INTSEC(IL)=INTSEC(IL) + 1
UNION(IN) - 0

370 CONTINUE
ENDIF

ENDIF
350 CONTINUE
C
C PRINT THE NUMBER OF DEDICATED HEADS ON EACH SEQUENCER .. *****a
DO 375 IL - 1.L

IF(OHAUL(IL) .EQ. 0) THEN
WRITE(21,1024) IL

ELSE
WRITE(21,1020) IL, INTSEC(IL), IL,

+ FLOAT(INTSEC(IL))/FLOAT(HEADS(IL))
ENDIF

375 CONTINUE

C
C PRINT THE NUMBER OF COMPONENT TAPE CHANGES REQUIRED BY EACH
C SEQUENCER BETWEEN CONSECUTIVE PRODUCTION RUNS *a**~sa...,

DO 385 IL - 1,L
MAXRUN - OHAUL(IL) + I
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IF(MAXRUN .EQ. 1) THEN

WRITE(21,1023) IL
ELSE

DO 390 JM - 2,MAXRUN
WRITE(21,1022) IL, JM, OTHER(ILJM)

390 CONTINUE

ENDIF
385 CONTINUE
C
C PRINT THE TOTAL NUMBER OF COMPONENT TAPE CHANGES REQUIRED BY

C EACH SEQUENCER OVER ALL PRODUCTION RUNS *

DO 400 IL - 1,L
COUNT = 0
MAXRUN = OHAUL(IL) + I
IF(MAXRUN .GE. 2) THEN

DO 405 JM = 2.MAXRUN

COUNT - COUNT + OTHER(ILJM)
405 CONTINUE

WRITE(21,1021) IL, COUNT
ENDIF

400 CONTINUE
C
C
1000 FORMAT (14,ISI5)
1001 FORMAT ('0', 'YFIX: L-',12, 3X, 'M-',13, 3X, 'N'.I4, /)
1002 FORMAT (12(1XI4))
1003 FORMAT (30(1XI1))
1004 FORMAT (9(IXI6))

1005 FORMAT (' ', 'INDEX:'.I4, 3X, 'SMALL:',14, 3X, 'MOST:',I4,/)
1006 FORMAT (' ', 'KEY:', 12, 3X, 'LIGHT: ', 16, /)
1007 FORMAT C' ',20(IX,L2))
1008 FORMAT (' TOTAL NUMBER OF SEQUENCED TAPES PRODUCED IS: ',I3,/)
C 1009 FORMAT ('0', 'PACK',14)
1010 FORMAT C' ','SEQUENCER# IS:'I,3,6X,'#HEADS REMAINING IS:',I4,/)
1011 FORMAT C' ', 'Y'I3',', I3,' = 1')
1013 FORMAT ('0'. 'SEQUENCER#', 13,4X, 'RUN#'. 14,/,' PACK TYPES

+ASSIGNED ARE:')

1014 FORMAT (15(1X,I3))

1016 FORMAT ('0', 'FOR SEQUENCER#',13,3X,'RUN#',I4./.
+ ' TOTAL # OF COMPONENT TYPES REQUIRED -',14,/.
+ ' COMPONENT TYPES REQUIRED ARE:')

1017 FORMAT (15(IXI3))
1018 FORMAT ('0'. 'FOR SEQUENCER#'.13,/,

+ 'TOTAL * OF COMPONENT TYPES REQUIRED FOR ALL RUNS IS:'.I4./,
+ ' COMPONENT TYPES REQUIRED ARE:')

1019 FORMAT C' '. 'TOTAL VOLUME OF ALL SEQUENCERS -'.17.//.
+ ' MAXIMUM LOAD PERMITTED ON ANY SEQUENCER DURING ITS

+FIRST RUN - '.17./)
1020 FORMAT ('0', 'THE NUMBER OF DISPENSING HEADS DEDICATED ON

+ SEQUENCER# '.1,' = '.13.//, ' THE PROPORTION OF DEDICATED HEADS

" ON SEQUENCER# '.I1,' - ',F5.3)
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1021 FORMAT ('0', 'THE TOTAL NUMBER OF COMPONENT TAPE CHANGES
+ REQUIRED BY SEQUENCER# '.11,' TO PRODUCE
+ ALL OF ITS ASSIGNED SEQUENCED TAPES IS: 'I3)

1022 FORMAT ('0', 'THE NUMBER OF COMPONENT TAPES THAT NEED
+ TO BE CHANGED ON',/,
+' SEQUENCER# ',I1,' TO PRODUCE RUN# '.I1,' - '.13)

1023 FORMAT ('0', 'SEQUENCER# ',I1.' REQUIRES NO COMPONENT TAPE
+ CHANGES SINCE IT IS ONLY MAKING ONE RUN')

1024 FORMAT ('0', 'SEQUENCER# '.11,' IS MAKING ONLY ONE RUN;',/,
+' THEREFORE, ALL OF ITS DISPENSING HEADS ARE DEDICATED')

C
C CLOSE OUTPUT FILE
CLOSE(UNIT-21)
C

STOP
9900 END

C
C

C

C
C END OF MAIN PROGRAM

C
C
C

C
C PROGRAM SUBROUTINES-
C ALL VARIABLES IN THE SUBROUTINES HAVE THE SANE DEFINITION AS IN

C THE M4AIN PROGRAM

C
C

SUBROUTINE RESULT (INDEX, IN,ITEMP ,SMALL,MOST,B)
C

C
INTEGER INDEX, IM, ITEMP, SMALL, MOST, B
C
INDEX - IN
ITEMP - INDEX
MOST - B - SMALL
C

RETURN
END
C
C

SUBROUTINE ASSIGN (VOLUME,ORDER,LOAD,SUN,ALCATE.PACK ,TRACK)
C

C
INTEGER VOLUME, ORDER, LOAD, SUN, ALCATE, TRACK
LOGICAL PACK
C

ALCATE - I

PACK - FALSE.

emu .. ma ammwn:
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LOAD = LOAD + VOLUME
TRACK - ORDER
SUM - SUM + I

C
RETURN
END
C
C

SUBROUTINE NEXPAC (PACK,DIFFER,SMALL, INDEX,MOST,B, IN)
C

C
INTEGER DIFFER, SMALL, INDEX, MOST, B. IN
LOGICAL PACK

C
IF(PACK) THEN

IF(DIFFER .LT. SMALL) THEN
INDEX - IN
SMALL - DIFFER

MOST = B - SMALL
ELSE

IF(DIFFER .EQ. SMALL AND. (B - SMALL) .GT. MOST) THEN
INDEX - IN

MOST = B - SMALL

ENDIF

ENDIF
ENDIF
C
RETURN
END
C
C ***a**a"** *s** **.*** . **** ** * i*** **,**.*...**** **.

SUBROUTINE COMPARE (A,UNIONCOTYPE)
C *** **...*************** ** * *..**.* ** *. r

C
INTEGER A, UNION, COTYPE
C

IF(A .EQ. 1) THEN
UNION I 1

ENDIF COTYPE = 1 ENDII
C
RETURN
END

C

SUBROUTINE NEDIF (COMP,A 
,UNION, DIFFER)

C

C
INTEGER COMP, A, UNION, 

DIFFER

C
COMP - A

UE -~
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